-
-
Notifications
You must be signed in to change notification settings - Fork 8.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[jvm-packages] Support Ranker (#10823)
- Loading branch information
Showing
6 changed files
with
558 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
124 changes: 124 additions & 0 deletions
124
...packages/xgboost4j-spark/src/main/scala/ml/dmlc/xgboost4j/scala/spark/XGBoostRanker.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
/* | ||
Copyright (c) 2024 by Contributors | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
*/ | ||
|
||
package ml.dmlc.xgboost4j.scala.spark | ||
|
||
import org.apache.spark.ml.{PredictionModel, Predictor} | ||
import org.apache.spark.ml.linalg.Vector | ||
import org.apache.spark.ml.param.ParamMap | ||
import org.apache.spark.ml.util.{DefaultParamsReadable, Identifiable, MLReadable, MLReader} | ||
import org.apache.spark.ml.xgboost.SparkUtils | ||
import org.apache.spark.sql.Dataset | ||
import ml.dmlc.xgboost4j.scala.Booster | ||
import ml.dmlc.xgboost4j.scala.spark.XGBoostRanker._uid | ||
import ml.dmlc.xgboost4j.scala.spark.params.HasGroupCol | ||
import ml.dmlc.xgboost4j.scala.spark.params.LearningTaskParams.RANKER_OBJS | ||
import org.apache.spark.sql.types.{DataType, DoubleType, StructType} | ||
|
||
class XGBoostRanker(override val uid: String, | ||
private val xgboostParams: Map[String, Any]) | ||
extends Predictor[Vector, XGBoostRanker, XGBoostRankerModel] | ||
with XGBoostEstimator[XGBoostRanker, XGBoostRankerModel] with HasGroupCol { | ||
|
||
def this() = this(_uid, Map[String, Any]()) | ||
|
||
def this(uid: String) = this(uid, Map[String, Any]()) | ||
|
||
def this(xgboostParams: Map[String, Any]) = this(_uid, xgboostParams) | ||
|
||
def setGroupCol(value: String): XGBoostRanker = set(groupCol, value) | ||
|
||
xgboost2SparkParams(xgboostParams) | ||
|
||
/** | ||
* Validate the parameters before training, throw exception if possible | ||
*/ | ||
override protected[spark] def validate(dataset: Dataset[_]): Unit = { | ||
super.validate(dataset) | ||
|
||
require(isDefinedNonEmpty(groupCol), "groupCol needs to be set") | ||
|
||
// If the objective is set explicitly, it must be in RANKER_OBJS | ||
if (isSet(objective)) { | ||
val tmpObj = getObjective | ||
require(RANKER_OBJS.contains(tmpObj), | ||
s"Wrong objective for XGBoostRanker, supported objs: ${RANKER_OBJS.mkString(",")}") | ||
} else { | ||
setObjective("rank:ndcg") | ||
} | ||
} | ||
|
||
/** | ||
* Sort partition for Ranker issue. | ||
* | ||
* @param dataset | ||
* @return | ||
*/ | ||
override private[spark] def sortPartitionIfNeeded(dataset: Dataset[_]) = { | ||
dataset.sortWithinPartitions(getGroupCol) | ||
} | ||
|
||
override protected def createModel( | ||
booster: Booster, | ||
summary: XGBoostTrainingSummary): XGBoostRankerModel = { | ||
new XGBoostRankerModel(uid, booster, Option(summary)) | ||
} | ||
|
||
override protected def validateAndTransformSchema( | ||
schema: StructType, | ||
fitting: Boolean, | ||
featuresDataType: DataType): StructType = | ||
SparkUtils.appendColumn(schema, $(predictionCol), DoubleType) | ||
} | ||
|
||
object XGBoostRanker extends DefaultParamsReadable[XGBoostRanker] { | ||
private val _uid = Identifiable.randomUID("xgbranker") | ||
} | ||
|
||
class XGBoostRankerModel private[ml](val uid: String, | ||
val nativeBooster: Booster, | ||
val summary: Option[XGBoostTrainingSummary] = None) | ||
extends PredictionModel[Vector, XGBoostRankerModel] | ||
with RankerRegressorBaseModel[XGBoostRankerModel] with HasGroupCol { | ||
|
||
def this(uid: String) = this(uid, null) | ||
|
||
def setGroupCol(value: String): XGBoostRankerModel = set(groupCol, value) | ||
|
||
override def copy(extra: ParamMap): XGBoostRankerModel = { | ||
val newModel = copyValues(new XGBoostRankerModel(uid, nativeBooster, summary), extra) | ||
newModel.setParent(parent) | ||
} | ||
|
||
override def predict(features: Vector): Double = { | ||
val values = predictSingleInstance(features) | ||
values(0) | ||
} | ||
} | ||
|
||
object XGBoostRankerModel extends MLReadable[XGBoostRankerModel] { | ||
override def read: MLReader[XGBoostRankerModel] = new ModelReader | ||
|
||
private class ModelReader extends XGBoostModelReader[XGBoostRankerModel] { | ||
override def load(path: String): XGBoostRankerModel = { | ||
val xgbModel = loadBooster(path) | ||
val meta = SparkUtils.loadMetadata(path, sc) | ||
val model = new XGBoostRankerModel(meta.uid, xgbModel, None) | ||
meta.getAndSetParams(model) | ||
model | ||
} | ||
} | ||
} |
Oops, something went wrong.