Efficient automated detection of flux-transient, reoccurring flux-variable, and moving objects
is increasingly important for large-scale astronomical surveys. braai
is a convolutional-neural-network,
deep-learning real/bogus classifier designed to separate genuine astrophysical events and objects
from false positive, or bogus, detections in the data of the Zwicky Transient Facilty (ZTF),
a new robotic time-domain survey currently in operation at the Palomar Observatory in California, USA.
braai
demonstrates a state-of-the-art performance as quantified by
its low false negative and false positive rates.
For details, please see Duev et al. 2019, MNRAS, 489 (3), 3582-3590.
todo: plots
See this jupyter notebook, or
See this jupyter notebook, or
Build and launch the app container:
# without GPU support:
docker build --rm -t braai:cpu -f Dockerfile .
# with GPU support (requires nvidia-docker):
docker build --rm -t braai:gpu -f gpu.Dockerfile .
# run:
# without GPU support:
docker run -it --rm --name braai -v /path/to/store/data:/data braai:cpu
# with GPU support (requires nvidia-docker) exposing the first GPU:
docker run --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=0 -it --rm --name braai -v /path/to/store/data:/data braai:gpu
Train braai
:
python /app/braai.py --t_stamp 20190614_003916 --model VGG6 --epochs 200 --patience 50 --batch_size 64 --verbose