Skip to content

Commit

Permalink
doc: whitespace consistency
Browse files Browse the repository at this point in the history
  • Loading branch information
wilfwilson authored and james-d-mitchell committed Jun 16, 2021
1 parent 79bc819 commit 8a4bc5c
Show file tree
Hide file tree
Showing 4 changed files with 21 additions and 21 deletions.
2 changes: 1 addition & 1 deletion doc/digraph.xml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
#############################################################################
##
#W digraph.xml
#Y Copyright (C) 2014-19 James D. Mitchell
#Y Copyright (C) 2014-21 James D. Mitchell
##
## Licensing information can be found in the README file of this package.
##
Expand Down
18 changes: 9 additions & 9 deletions doc/examples.xml
Original file line number Diff line number Diff line change
Expand Up @@ -247,7 +247,7 @@ gap> PetersenGraph(IsMutableDigraph);

&STANDARD_FILT_TEXT;

<Example><![CDATA[
<Example><![CDATA[
gap> GeneralisedPetersenGraph(7, 2);
<immutable symmetric digraph with 14 vertices, 42 edges>
gap> GeneralisedPetersenGraph(40, 1);
Expand Down Expand Up @@ -280,7 +280,7 @@ gap> GeneralisedPetersenGraph(IsMutableDigraph, 9, 4);

&STANDARD_FILT_TEXT;

<Example><![CDATA[
<Example><![CDATA[
gap> D := LollipopGraph(5, 3);
<immutable connected symmetric digraph with 8 vertices, 26 edges>
gap> CliqueNumber(D);
Expand Down Expand Up @@ -316,13 +316,13 @@ gap> LollipopGraph(IsMutableDigraph, 3, 8);
share an edge or a corner. It can also be constructed as the strong product
of two path graphs.</Q>
<P/>

In particular, the <C><A>n</A> * <A>k</A></C> vertices can be arranged
into an <A>n</A> by <A>k</A> grid such that two vertices are adjacent in
the digraph if and only if they are orthogonally or diagonally adjacent in the grid.
The correspondence between vertices and grid positions is given by
<Ref Oper="DigraphVertexLabels"/>. <P/>

See also <Ref Oper="SquareGridGraph"/> and
<Ref Oper="TriangularGridGraph"/>. <P/>

Expand Down Expand Up @@ -430,7 +430,7 @@ gap> TriangularGridGraph(IsMutable, 3, 3);
vertices. If <A>k</A> is at least <C>2</C>, then this is the complete
bipartite digraph with bicomponents
<C>[1]</C> and <C>[2 .. <A>k</A>]</C>. <P/>

See <Ref Prop="IsUndirectedTree"/>, <Ref Prop="IsCompleteBipartiteDigraph"/>,
and <Ref Attr="DigraphBicomponents"/>. <P/>

Expand Down Expand Up @@ -472,7 +472,7 @@ true

&STANDARD_FILT_TEXT;

<Example><![CDATA[
<Example><![CDATA[
gap> D := KnightsGraph(8, 8);
<immutable connected symmetric digraph with 64 vertices, 336 edges>
gap> IsConnectedDigraph(D);
Expand Down Expand Up @@ -508,7 +508,7 @@ gap> KnightsGraph(IsMutable, 3, 9);

&STANDARD_FILT_TEXT;

<Example><![CDATA[
<Example><![CDATA[
gap> HaarGraph(3);
<immutable bipartite vertex-transitive symmetric digraph with bicompon\
ent sizes 2 and 2>
Expand Down Expand Up @@ -538,7 +538,7 @@ ent sizes 5 and 5>
connecting one leaf of each of <A>n</A> copies of an <A>k</A>-star graph
with a single root vertex that is distinct from all the stars.</Q>
<P/>

Specifically, in the resulting digraph, vertex <C>1</C> is the 'root',
and for each <C>m</C> in <C>[1 .. <A>k</A>]</C>,
the <C>m</C>th star is on the vertices
Expand Down Expand Up @@ -678,7 +678,7 @@ true
Note that <C>BinaryTree(<A>m</A>)</C> is the induced subdigraph of
<C>BinaryTree(<A>m</A>+1)</C> on the vertices <C>[1..2^(<A>m</A>-1)]</C>.
<P/>

&STANDARD_FILT_TEXT;

<Example><![CDATA[
Expand Down
6 changes: 3 additions & 3 deletions doc/isomorph.xml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
#############################################################################
##
#W isomorph.xml James D. Mitchell
#Y Copyright (C) 2014-18 Wilf A. Wilson
#Y Copyright (C) 2014-21 Wilf A. Wilson
##
## Licensing information can be found in the README file of this package.
##
Expand Down Expand Up @@ -783,13 +783,13 @@ gap> OutNeighbours(canon);
</List>
See also <Ref Attr="AutomorphismGroup" Label="for a digraph"
/>.<P/>

If <A>col1</A> and <A>col2</A>, or <A>col</A>, are given, then they must
represent vertex colourings; see
<Ref Oper="AutomorphismGroup" Label="for a digraph and a homogeneous list"/>
for details of the permissible values for
these arguments. The homomorphism must then also have the property:

<List>
<Item>
<C>col1[i] = col2[i ^ x]</C> for all vertices <C>i</C> of <A>src</A>,
Expand Down
16 changes: 8 additions & 8 deletions doc/prop.xml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
#############################################################################
##
#W prop.xml
#Y Copyright (C) 2014-19 James D. Mitchell
#Y Copyright (C) 2014-21 James D. Mitchell
##
## Licensing information can be found in the README file of this package.
##
Expand Down Expand Up @@ -54,7 +54,7 @@ true]]></Example>

&MUTABLE_RECOMPUTED_PROP;

<Example><![CDATA[
<Example><![CDATA[
gap> D := Digraph([[1, 2], [2]]);
<immutable digraph with 2 vertices, 3 edges>
gap> DigraphEdges(D);
Expand Down Expand Up @@ -258,7 +258,7 @@ false]]></Example>

&MUTABLE_RECOMPUTED_PROP;

<Example><![CDATA[
<Example><![CDATA[
gap> IsBiconnectedDigraph(Digraph([[1, 3], [2, 3], [3]]));
false
gap> IsBiconnectedDigraph(CycleDigraph(5));
Expand Down Expand Up @@ -468,7 +468,7 @@ false

&MUTABLE_RECOMPUTED_PROP;

<Example><![CDATA[
<Example><![CDATA[
gap> D := Digraph([[1, 3], [2, 3], [3]]);
<immutable digraph with 3 vertices, 5 edges>
gap> IsChainDigraph(D);
Expand Down Expand Up @@ -509,7 +509,7 @@ true]]></Example>

&MUTABLE_RECOMPUTED_PROP;

<Example><![CDATA[
<Example><![CDATA[
gap> D := Digraph([[1, 3], [2, 3], [3]]);
<immutable digraph with 3 vertices, 5 edges>
gap> IsCycleDigraph(D);
Expand Down Expand Up @@ -1203,7 +1203,7 @@ true

&MUTABLE_RECOMPUTED_PROP;

<Example><![CDATA[
<Example><![CDATA[
gap> D := Digraph([[1], [2, 3], [2, 3]]);
<immutable digraph with 3 vertices, 5 edges>
gap> IsPreorderDigraph(D);
Expand Down Expand Up @@ -1240,7 +1240,7 @@ false

&MUTABLE_RECOMPUTED_PROP;

<Example><![CDATA[
<Example><![CDATA[
gap> D := Digraph([[1, 3], [2, 3], [3]]);
<immutable digraph with 3 vertices, 5 edges>
gap> IsPartialOrderDigraph(D);
Expand Down Expand Up @@ -1271,7 +1271,7 @@ true

&MUTABLE_RECOMPUTED_PROP;

<Example><![CDATA[
<Example><![CDATA[
gap> D := Digraph([[1, 3], [2], [1, 3]]);
<immutable digraph with 3 vertices, 5 edges>
gap> IsEquivalenceDigraph(D);
Expand Down

0 comments on commit 8a4bc5c

Please sign in to comment.