Skip to content

Commit

Permalink
Removed scitools imports
Browse files Browse the repository at this point in the history
  • Loading branch information
EdCaunt committed Sep 23, 2020
1 parent 4c7e185 commit 0c9df05
Showing 1 changed file with 22 additions and 28 deletions.
50 changes: 22 additions & 28 deletions src/vib/vib.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
import numpy as np
import sympy as sp
from devito import Dimension, Constant, TimeFunction, Eq, solve, Operator
#import matplotlib.pyplot as plt
import scitools.std as plt
import matplotlib.pyplot as plt
# import scitools.std as plt

def solver(I, V, m, b, s, F, dt, T, damping='linear'):
"""
Expand All @@ -13,33 +13,27 @@ def solver(I, V, m, b, s, F, dt, T, damping='linear'):
'quadratic', f(u')=b*u'*abs(u').
F(t) and s(u) are Python functions.
"""
dt = float(dt)
b = float(b)
m = float(m)
dt = float(dt); b = float(b); m = float(m) # avoid integer div.
Nt = int(round(T/dt))
t = Dimension('t', spacing=Constant('h_t'))

u = TimeFunction(name='u', dimensions=(t,),
shape=(Nt+1,), space_order=2)

u.data[0] = I
u = np.zeros(Nt+1)
t = np.linspace(0, Nt*dt, Nt+1)

u[0] = I
if damping == 'linear':
# dtc for central difference (default for time is forward, 1st order)
eqn = m*u.dt2 + b*u.dtc + s(u) - F(u)
stencil = Eq(u.forward, solve(eqn, u.forward))
u[1] = u[0] + dt*V + dt**2/(2*m)*(-b*V - s(u[0]) + F(t[0]))
elif damping == 'quadratic':
# fd_order set as backward derivative used is 1st order
eqn = m*u.dt2 + b*u.dt*sp.Abs(u.dtl(fd_order=1)) + s(u) - F(u)
stencil = Eq(u.forward, solve(eqn, u.forward))
# First timestep needs to have the backward timestep substituted
stencil_init = stencil.subs(u.backward, u.forward-2*t.spacing*V)
op_init = Operator(stencil_init, name='first_timestep')
op = Operator(stencil, name='main_loop')
op_init.apply(h_t=dt, t_M=1)
op.apply(h_t=dt, t_m=1, t_M=Nt-1)
u[1] = u[0] + dt*V + \
dt**2/(2*m)*(-b*V*abs(V) - s(u[0]) + F(t[0]))

return u.data, np.linspace(0, Nt*dt, Nt+1)
for n in range(1, Nt):
if damping == 'linear':
u[n+1] = (2*m*u[n] + (b*dt/2 - m)*u[n-1] +
dt**2*(F(t[n]) - s(u[n])))/(m + b*dt/2)
elif damping == 'quadratic':
u[n+1] = (2*m*u[n] - m*u[n-1] + b*u[n]*abs(u[n] - u[n-1])
+ dt**2*(F(t[n]) - s(u[n])))/\
(m + b*abs(u[n] - u[n-1]))
return u, t

def visualize(u, t, title='', filename='tmp'):
plt.plot(t, u, 'b-')
Expand Down Expand Up @@ -212,9 +206,9 @@ def plot_empirical_freq_and_amplitude(u, t):
plt.figure()
from math import pi
w = 2*pi/p
plt.plot(range(len(p)), w, 'r-')
plt.plot(list(range(len(p))), w, 'r-')
plt.hold('on')
plt.plot(range(len(a)), a, 'b-')
plt.plot(list(range(len(a))), a, 'b-')
ymax = 1.1*max(w.max(), a.max())
ymin = 0.9*min(w.min(), a.min())
plt.axis([0, max(len(p), len(a)), ymin, ymax])
Expand Down Expand Up @@ -247,7 +241,7 @@ def visualize_front(u, t, window_width, savefig=False):
axis=plot_manager.axis(),
show=not savefig) # drop window if savefig
if savefig:
print 't=%g' % t[n]
print('t=%g' % t[n])
st.savefig('tmp_vib%04d.png' % n)
plot_manager.update(n)

Expand All @@ -263,7 +257,7 @@ def visualize_front_ascii(u, t, fps=10):

p = Plotter(ymin=umin, ymax=umax, width=60, symbols='+o')
for n in range(len(u)):
print p.plot(t[n], u[n]), '%.2f' % (t[n])
print(p.plot(t[n], u[n]), '%.2f' % (t[n]))
time.sleep(1/float(fps))

def minmax(t, u):
Expand Down

0 comments on commit 0c9df05

Please sign in to comment.