This repository contains Stanford CS236 default final project starter code. The baseline models are Residual SNGANs from Mimicry: Towards the Reproducibility of GAN Research.
- Install Miniconda package manager.
- Create and activate conda environment.
conda env create -f environment.yml
conda activate cs236
- Download dataset and baseline checkpoints.
python download.py
- Start training using baseline model.
python train.py --name EXPERMENT_NAME
- Evaluate trained models.
python eval.py --ckpt_path PATH_TO_CKPT --im_size RESOLUTION
- Create leaderboard submission
submission.pth
(upload to Gradescope).
python eval.py --ckpt_path PATH_TO_CKPT --im_size RESOLUTION --submit
- Visualize training logs using Tensorboard.
tensorboard --logdir out --bind_all
NOTE: Metrics logged during training (e.g. IS, FID, KID) are approximations computed using limited data. Use
eval.py
to compute accurate metrics.