Skip to content

deepgenerativemodels/default-project

Repository files navigation

CS236 Default Project

This repository contains Stanford CS236 default final project starter code. The baseline models are Residual SNGANs from Mimicry: Towards the Reproducibility of GAN Research.

Installation

  • Install Miniconda package manager.
  • Create and activate conda environment.
conda env create -f environment.yml
conda activate cs236
  • Download dataset and baseline checkpoints.
python download.py
  • Start training using baseline model.
python train.py --name EXPERMENT_NAME
  • Evaluate trained models.
python eval.py --ckpt_path PATH_TO_CKPT --im_size RESOLUTION
  • Create leaderboard submission submission.pth (upload to Gradescope).
python eval.py --ckpt_path PATH_TO_CKPT --im_size RESOLUTION --submit
  • Visualize training logs using Tensorboard.
tensorboard --logdir out --bind_all

NOTE: Metrics logged during training (e.g. IS, FID, KID) are approximations computed using limited data. Use eval.py to compute accurate metrics.

Metrics

Baseline-32-150k Baseline-64-150k Baseline-32-295k Baseline-64-295k
Resolution 32x32 64x64 32x32 64x64
Seed 0 0 236 236
Batch Size 64 64 64 64
niter 150k 150k 295k 295k
ndis 5 5 5 5
β1 0 0 0 0
β2 0.9 0.9 0.9 0.9
lr 2e-4 2e-4 2e-4 2e-4
lrdecay Linear Linear Linear Linear
IS 6.212 7.234 6.326 7.330
FID 42.452 68.360 35.339 62.250
KID 0.02734 0.06240 0.01984 0.05556
Samples

About

Stanford CS236 Default Final Project Starter Code

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages