Skip to content

Commit

Permalink
Use ActNorm in autoregressive architectures
Browse files Browse the repository at this point in the history
  • Loading branch information
davidnabergoj committed Aug 24, 2024
1 parent 905af0a commit 5bb8bb3
Showing 1 changed file with 3 additions and 1 deletion.
4 changes: 3 additions & 1 deletion torchflows/bijections/finite/autoregressive/architectures.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
DenseSigmoidalCoupling,
DeepDenseSigmoidalCoupling, DeepSigmoidalInverseMaskedAutoregressive, DeepSigmoidalForwardMaskedAutoregressive,
DenseSigmoidalInverseMaskedAutoregressive, DenseSigmoidalForwardMaskedAutoregressive,
DeepDenseSigmoidalInverseMaskedAutoregressive, DeepDenseSigmoidalForwardMaskedAutoregressive
DeepDenseSigmoidalInverseMaskedAutoregressive, DeepDenseSigmoidalForwardMaskedAutoregressive, ActNorm
)
from torchflows.bijections.base import BijectiveComposition
from torchflows.bijections.finite.autoregressive.layers_base import CouplingBijection, \
Expand All @@ -39,7 +39,9 @@ def make_basic_layers(base_bijection: Type[
if edge_list is None:
bijections.append(ReversePermutation(event_shape=event_shape))
bijections.append(base_bijection(event_shape=event_shape, edge_list=edge_list))
bijections.append(ActNorm(event_shape=event_shape))
bijections.append(ElementwiseAffine(event_shape=event_shape))
bijections.append(ActNorm(event_shape=event_shape))
return bijections


Expand Down

0 comments on commit 5bb8bb3

Please sign in to comment.