Skip to content

Official code for Controlling Neural Network Smoothness for Neural Algorithmic Reasoning (TMLR, 2023)

License

Notifications You must be signed in to change notification settings

david-klindt/tmlr_2023

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Controlling Neural Network Smoothness for Neural Algorithmic Reasoning

This repo contains the official implementation for the paper Controlling Neural Network Smoothness for Neural Algorithmic Reasoning

by David A. Klindt


The modelling framework of neural algorithmic reasoning (Veličković & Blundell, 2021) postulates that a continuous neural network may learn to emulate the discrete reasoning steps of a symbolic algorithm. We investigate the underlying hypothesis in the most simple conceivable scenario – the addition of real numbers. Our results show that two layer neural networks fail to learn the structure of the task, despite containing multiple solutions of the true function within their hypothesis class. Growing the network’s width leads to highly complex error regions in the input space. Moreover, we find that the network fails to generalise with increasing severity i) in the training domain, ii) outside of the training domain but within its convex hull, and iii) outside the training domain’s convex hull. This behaviour can be emulated with Gaussian process regressors that use radial basis function kernels of decreasing length scale. Classical results establish an equivalence between Gaussian processes and infinitely wide neural networks. We demonstrate a tight linkage between the scaling of a network weights’ standard deviation and its effective length scale on a sinusoidal regression problem, suggesting simple modifications to control the length scale of the function learned by a neural network and, thus, its smoothness. This has important applications for the different generalisation scenarios suggested above, but it also suggests a partial remedy to the brittleness of neural network predictions as exposed by adversarial examples. We demonstrate the gains in adversarial robustness that our modification achieves on a standard classification problem of handwritten digit recognition. In conclusion, this work shows inherent problems of neural networks even for the simplest algorithmic tasks which, however, may be partially remedied through links to Gaussian processes.

About

Official code for Controlling Neural Network Smoothness for Neural Algorithmic Reasoning (TMLR, 2023)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published