Skip to content

Commit

Permalink
Merge pull request #465 from datamol-io/baselines
Browse files Browse the repository at this point in the history
Baselines
  • Loading branch information
DomInvivo authored Sep 19, 2023
2 parents f4f47af + e2551f2 commit 3298898
Showing 1 changed file with 47 additions and 5 deletions.
52 changes: 47 additions & 5 deletions docs/baseline.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,25 +4,33 @@ From the paper to be released soon. Below, you can see the baselines for the `To

One can observe that the smaller datasets (`Zinc12k` and `Tox21`) beneficiate from adding another unrelated task (`QM9`), where the labels are computed from DFT simulations.

**NEW baselines added 2023/09/18**: Multitask baselines have been added for GatedGCN and MPNN++ (sum aggretator) using 3 random seeds. They achieve the best performance by a significant margin on Zinc12k and Tox21, while sacrificing a little on QM9.

| Dataset | Model | MAE ↓ | Pearson ↑ | R² ↑ | MAE ↓ | Pearson ↑ | R² ↑ |
|-----------|-------|-----------|-----------|-----------|---------|-----------|---------|
| | <th colspan="3" style="text-align: center;">Single-Task Model</th> <th colspan="3" style="text-align: center;">Multi-Task Model</th> |
|
| **QM9** | GCN | 0.102 ± 0.0003 | 0.958 ± 0.0007 | 0.920 ± 0.002 | 0.119 ± 0.01 | 0.955 ± 0.001 | 0.915 ± 0.001 |
| | GIN | 0.0976 ± 0.0006 | **0.959 ± 0.0002** | **0.922 ± 0.0004** | 0.117 ± 0.01 | 0.950 ± 0.002 | 0.908 ± 0.003 |
| | GINE | **0.0959 ± 0.0002** | 0.955 ± 0.002 | 0.918 ± 0.004 | 0.102 ± 0.01 | 0.956 ± 0.0009 | 0.918 ± 0.002 |
|
| **Zinc12k** | GCN | 0.348 ± 0.02 | 0.941 ± 0.002 | 0.863 ± 0.01 | 0.226 ± 0.004 | 0.973 ± 0.0005 | 0.940 ± 0.003 |
| | GatedGCN | | | | 0.1212 ± 0.0009 | 0.9457 ± 0.0002 | 0.8964 ± 0.0006 |
| | MPNN++ (sum) | | | | 0.1174 ± 0.0012 | 0.9460 ± 0.0005 | 0.8989 ± 0.0008 |
**Zinc12k** | GCN | 0.348 ± 0.02 | 0.941 ± 0.002 | 0.863 ± 0.01 | 0.226 ± 0.004 | 0.973 ± 0.0005 | 0.940 ± 0.003 |
| | GIN | 0.303 ± 0.007 | 0.950 ± 0.003 | 0.889 ± 0.003 | 0.189 ± 0.004 | 0.978 ± 0.006 | 0.953 ± 0.002 |
| | GINE | 0.266 ± 0.02 | 0.961 ± 0.003 | 0.915 ± 0.01 | **0.147 ± 0.009** | **0.987 ± 0.001** | **0.971 ± 0.003** |
| | GINE | 0.266 ± 0.02 | 0.961 ± 0.003 | 0.915 ± 0.01 | 0.147 ± 0.009 | 0.987 ± 0.001 | 0.971 ± 0.003 |
| | GatedGCN | | | | 0.1282 ± 0.0045 | 0.9850 ± 0.0006 | 0.9639 ± 0.0024 |
| | MPNN++ (sum) | | | | **0.1002 ± 0.0025** | **0.9909 ± 0.0004** | **0.9777 ± 0.0014** |

| | | BCE ↓ | AUROC ↑ | AP ↑ | BCE ↓ | AUROC ↑ | AP ↑ |
|-----------|-------|-----------|-----------|-----------|---------|-----------|---------|
| | <th colspan="3" style="text-align: center;">Single-Task Model</th> <th colspan="3" style="text-align: center;">Multi-Task Model</th> |
|
| **Tox21** | GCN | 0.202 ± 0.005 | 0.773 ± 0.006 | 0.334 ± 0.03 | **0.176 ± 0.001** | **0.850 ± 0.006** | 0.446 ± 0.01 |
| **Tox21** | GCN | 0.202 ± 0.005 | 0.773 ± 0.006 | 0.334 ± 0.03 | 0.176 ± 0.001 | 0.850 ± 0.006 | 0.446 ± 0.01 |
| | GIN | 0.200 ± 0.002 | 0.789 ± 0.009 | 0.350 ± 0.01 | 0.176 ± 0.001 | 0.841 ± 0.005 | 0.454 ± 0.009 |
| | GINE | 0.201 ± 0.007 | 0.783 ± 0.007 | 0.345 ± 0.02 | 0.177 ± 0.0008 | 0.836 ± 0.004 | **0.455 ± 0.008** |
| | GINE | 0.201 ± 0.007 | 0.783 ± 0.007 | 0.345 ± 0.02 | 0.177 ± 0.0008 | 0.836 ± 0.004 | 0.455 ± 0.008 |
| | GatedGCN | | | | 0.1733 ± 0.0015 | 0.8522 ± 0.0022 | **0.4620 ± 0.0118** |
| | MPNN++ (sum) | | | | **0.1725 ± 0.0012** | **0.8569 ± 0.0005** | 0.4598 ± 0.0044 |


# LargeMix Baseline
## LargeMix test set metrics
Expand Down Expand Up @@ -88,6 +96,40 @@ This is not surprising as they contain two orders of magnitude more datapoints a
| | GIN | 0.1873 ± 0.0033 | **0.1701 ± 0.0142** |
| | GINE | 0.1883 ± 0.0039 | **0.1771 ± 0.0010** |

## NEW: Largemix improved sweep - 2023/08-18

Unsatisfied with the prior results, we ran a bayesian search over a broader set of parameters, and including only more expressive models, namely GINE, GatedGCN and MPNN++. We further increase the number of parameters to 10M due to evidence of underfitting. We evaluate only the multitask setting.

We observe a significant improvement over all tasks, with a very notable r2-score increase of +0.53 (0.27 -> 0.80) compared to the best node-level property prediction on PCQM4M_N4.

The results are reported below over 1 seed. We are currently running more seeds of the same models.

| Dataset | Model | MAE ↓ | Pearson ↑ | R² ↑ |
|---------------|----------------|--------|---------|--------|
| **PCQM4M_G25** | GINE | 0.2250 | 0.8840 | 0.7911 |
| | GatedGCN | 0.2457 | 0.8698 | 0.7688 |
| | MPNN++ (sum) | 0.2269 | 0.8802 | 0.7855 |
|
| **PCQM4M_N4** | GINE | 0.2699 | 0.8475 | 0.7182 |
| | GatedGCN | 0.3337 | 0.8102 | 0.6566 |
| | MPNN++ (sum) | 0.2114 | 0.8942 | 0.8000 |

| Dataset | Model | BCE ↓ | AUROC ↑ | AP ↑ |
|---------------|----------------|--------|---------|--------|
| **PCBA_1328** | GINE | 0.0334 | 0.7879 | 0.2808 |
| | GatedGCN | 0.0351 | 0.7788 | 0.2611 |
| | MPNN++ (sum) | 0.0344 | 0.7815 | 0.2666 |
|
| **L1000_VCAP** | GINE | 0.1907 | 0.6416 | 0.4042 |
| | GatedGCN | 0.1866 | 0.6395 | 0.4092 |
| | MPNN++ (sum) | 0.1867 | 0.6478 | 0.4131 |
|
| **L1000_MCF7** | GINE | 0.1931 | 0.6352 | 0.4235 |
| | GatedGCN | 0.1859 | 0.6547 | 0.4224 |
| | MPNN++ (sum) | 0.1870 | 0.6593 | 0.4254 |



# UltraLarge Baseline

## UltraLarge test set metrics
Expand Down

0 comments on commit 3298898

Please sign in to comment.