Skip to content

Commit

Permalink
deploy: ba2919d
Browse files Browse the repository at this point in the history
  • Loading branch information
Hecdaniel committed Apr 18, 2024
1 parent ec3dca0 commit cfb2389
Showing 1 changed file with 4 additions and 25 deletions.
29 changes: 4 additions & 25 deletions publications/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -266,12 +266,12 @@ <h6 class="cs-title">Year</h6>
<h6 class="cs-title">Keywords</h6>
<div aria-hidden="true" class="line line-full"></div>
<div class="cs-filter-wrapper cs-text">
<div data-filter="all" class="active filter-option">All (42)</div>
<div data-filter="all" class="active filter-option">All (41)</div>




<div data-filter="Data science" class="filter-option">Data science (12)</div>
<div data-filter="Data science" class="filter-option">Data science (11)</div>



Expand Down Expand Up @@ -309,10 +309,10 @@ <h6 class="cs-title">Keywords</h6>
<h6 class="cs-title">Journals</h6>
<div aria-hidden="true" class="line line-full"></div>
<div class="cs-filter-wrapper cs-text">
<div data-filter="all" class="active filter-option">All (42)</div>
<div data-filter="all" class="active filter-option">All (41)</div>


<div data-filter="arXiv" class="filter-option">arXiv (3)</div>
<div data-filter="arXiv" class="filter-option">arXiv (2)</div>

<div data-filter="Authorea" class="filter-option">Authorea (1)</div>

Expand Down Expand Up @@ -392,27 +392,6 @@ <h6 class="cs-title">Journals</h6>
<span class="cs-publication-year">2024</span>
<span class="cs-desc">
<div class="read-more-text"><p>We make Bayesian Additive Regression Networks (BARN) available as a Python package, <code>barmpy</code>, with documentation at this <a href="https://dvbuntu.github.io/barmpy/">url</a> for general machine learning practitioners. Our object-oriented design is compatible with SciKit-Learn, allowing usage of their tools like cross-validation. To ease learning to use <code>barmpy</code>, we produce a companion tutorial that expands on reference information in the documentation. Any interested user can <code>pip install barmpy</code> from the official <code>PyPi</code> repository. <code>barmpy</code> also serves as a baseline Python library for generic Bayesian Additive Regression Models.</p>
</div>
<span class="read-more-btn">...read more</span>
</span>
<div aria-hidden="true" class="line line-full"></div>
<div class="cs-item-filters"><div class="cs-filter">Data science</div></div><div aria-hidden="true" class="line line-full"></div>
<div class="cs-item-social"><a href="/assets/documents/publications/2404.04738.pdf" target="_blank"><img src="../assets/icons/pdf.svg" alt="pdfDocument" width="30" height="30" decoding="async" aria-hidden="true"></a><a href="https://arxiv.org/abs/2404.04738" target="_blank"><img src="../assets/icons/link.svg" alt="webLink" width="30" height="30" decoding="async" aria-hidden="true"></a></div></div>
</div><div class="cs-item"><picture class="cs-picture">
<!--Mobile Image-->
<source media="(max-width: 600px)" srcset="/assets/images/publications/barmpy.jpg">
<!--Tablet and up Image-->
<source media="(min-width: 601px)" srcset="/assets/images/publications/barmpy.jpg">
<img loading="lazy" decoding="async" src="/assets/images/publications/barmpy.jpg" alt="" width="522" height="370" aria-hidden="true">
</picture>
<div class="cs-flex-group">
<span class="cs-publication-type">arXiv</span>
<span class="cs-name"><p>BARMPy: Bayesian Additive Regression Models Python Package</p>
</span>
<span class="cs-publication-author"><span class="cs-highlight-author">Danielle Van Boxel</span></span>
<span class="cs-publication-year">2024</span>
<span class="cs-desc">
<div class="read-more-text"><p>We make Bayesian Additive Regression Networks (BARN) available as a Python package, <code>barmpy</code>, with documentation at this <a href="https://dvbuntu.github.io/barmpy/">url</a> for general machine learning practitioners. Our object-oriented design is compatible with SciKit-Learn, allowing usage of their tools like cross-validation. To ease learning to use <code>barmpy</code>, we produce a companion tutorial that expands on reference information in the documentation. Any interested user can <code>pip install barmpy</code> from the official <code>PyPi</code> repository. <code>barmpy</code> also serves as a baseline Python library for generic Bayesian Additive Regression Models.</p>
</div>
<span class="read-more-btn">...read more</span>
</span>
Expand Down

0 comments on commit cfb2389

Please sign in to comment.