Skip to content

Commit

Permalink
Merge branch 'main' into add_transform_points
Browse files Browse the repository at this point in the history
  • Loading branch information
HaleySchuhl authored Aug 26, 2024
2 parents 2f9bf73 + 8dea687 commit 5b9b308
Show file tree
Hide file tree
Showing 8 changed files with 100 additions and 21 deletions.
8 changes: 5 additions & 3 deletions docs/read_geotif.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,19 +2,20 @@

Read in data (from tif format, most likely georeferenced image data).

**plantcv.geospatial.read_geotif**(*filename, bands="B,G,R"*)
**plantcv.geospatial.read_geotif**(*filename, bands="R,G,B", cropto=None*)

**returns** [PlantCV Spectral_data](https://plantcv.readthedocs.io/en/latest/Spectral_data/) object instance.

- **Parameters:**
- filename - Path of the TIF image file.
- bands - Comma separated string representing the order of image bands (e.g., `bands="B,G,R"`), or a list of wavelengths (e.g., `bands=[650, 560, 480]`)
- bands - Comma separated string representing the order of image bands (e.g., `bands="R,G,B"`), or a list of wavelengths (e.g., `bands=[650, 560, 480]`)
- Supported symbols and their default wavelengths:
- R (red) = 650nm
- G (green) = 560nm
- B (blue) = 480nm
- RE (rededge) = 717nm
- N or NIR (near infrared) = 842nm
- cropto - A geoJSON-type shapefile to crop the input image as it is read in. Default is None.

- **Example use:**
- below
Expand All @@ -25,7 +26,8 @@ import plantcv.geospatial as geo

# Read geotif in
ortho1 = geo.read_geotif(filename="./data/example_img.tif", bands="b,g,r,RE,NIR")
ortho2 = geo.read_geotif(filename="./data/example_rgb_img.tif", bands="B,G,R")
ortho2 = geo.read_geotif(filename="./data/example_rgb_img.tif", bands="R,G,B",
cropto="./shapefiles/experimental_bounds.geojson)

```

Expand Down
62 changes: 46 additions & 16 deletions plantcv/geospatial/read_geotif.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,14 +4,16 @@
import cv2
import rasterio
import numpy as np
from plantcv.plantcv import params
from plantcv.plantcv import fatal_error
import fiona
from rasterio.mask import mask
from plantcv.plantcv import warn, params, fatal_error
from plantcv.plantcv._debug import _debug
from plantcv.plantcv.classes import Spectral_data
from shapely.geometry import shape, MultiPoint, mapping


def _find_closest_unsorted(array, target):
"""Find closest index of array item with smallest distance from the target.
"""Find closest index of array item with smallest distance from
Parameters
----------
Expand Down Expand Up @@ -60,38 +62,63 @@ def _parse_bands(bands):
return band_list


def read_geotif(filename, bands="B,G,R"):
def read_geotif(filename, bands="R,G,B", cropto=None):
"""Read Georeferenced TIF image from file.
Parameters
----------
filename : str
Path of the TIF image file.
bands : str, list, optional
Comma separated string listing the order of bands or a list of wavelengths, by default "B,G,R"
Comma separated string listing the order of bands or a list of wavelengths, by default "R,G,B"
Returns
-------
plantcv.plantcv.classes.Spectral_data
Orthomosaic image data
Orthomosaic image data in a Spectral_data class instance
"""
img = rasterio.open(filename)
img_data = img.read()
if cropto:
with fiona.open(cropto, 'r') as shapefile:
# polygon-type shapefile
if len(shapefile) == 1:
shapes = [feature['geometry'] for feature in shapefile]
# points-type shapefile
else:
points = [shape(feature["geometry"]) for feature in shapefile]
multi_point = MultiPoint(points)
convex_hull = multi_point.convex_hull
shapes = [mapping(convex_hull)]
# rasterio does the cropping within open
with rasterio.open(filename, 'r') as src:
img_data, geo_transform = mask(src, shapes, crop=True)
d_type = src.dtypes[0]
geo_crs = src.crs.wkt

else:
img = rasterio.open(filename)
img_data = img.read()
d_type = img.dtypes[0]
geo_transform = img.transform
geo_crs = img.crs.wkt

img_data = img_data.transpose(1, 2, 0) # reshape such that z-dimension is last
height = img.height
width = img.width
height, width, depth = img_data.shape
wavelengths = {}

# Parse bands if input is a string
if isinstance(bands, str):
bands = _parse_bands(bands)

# Create a dictionary of wavelengths and their indices
for i, wl in enumerate(bands):
wavelengths[wl] = i

# Check if user input matches image dimension in z direction
if depth != len(bands):
warn(f"{depth} bands found in the image data but {filename} was provided with {bands}")
# Mask negative background values
img_data[img_data < 0.] = 0
if np.sum(img_data) == 0:
fatal_error(f"your image is empty, are the crop-to bounds outside of the {filename} image area?")

# Make a list of wavelength keys
wl_keys = wavelengths.keys()
# Find which bands to use for red, green, and blue bands of the pseudo_rgb image
Expand All @@ -113,12 +140,15 @@ def read_geotif(filename, bands="B,G,R"):
max_wavelength=None,
min_wavelength=None,
max_value=np.max(img_data), min_value=np.min(img_data),
d_type=img.dtypes[0],
d_type=d_type,
wavelength_dict=wavelengths, samples=int(width),
lines=int(height), interleave=None,
wavelength_units="nm", array_type="datacube",
pseudo_rgb=pseudo_rgb, filename=filename, default_bands=[480, 540, 630])

_debug(visual=pseudo_rgb, filename=os.path.join(params.debug_outdir, f"{params.device}_pseudo_rgb.png"))
pseudo_rgb=pseudo_rgb, filename=filename,
default_bands=[480, 540, 630],
geo_transform=geo_transform,
geo_crs=geo_crs)

_debug(visual=pseudo_rgb, filename=os.path.join(params.debug_outdir,
f"{params.device}_pseudo_rgb.png"))
return spectral_array
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ dependencies = [
"matplotlib",
"rasterio",
"fiona",

"shapely",
]
requires-python = ">=3.6"
authors = [
Expand Down
6 changes: 6 additions & 0 deletions tests/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,10 +14,16 @@ def __init__(self):
self.snapshot_dir = os.path.join(self.datadir, "snapshot_dir")
# multispectral image
self.cropped_tif = os.path.join(self.datadir, "615.tif")
# empty image
self.empty_tif = os.path.join(self.datadir, "cropped_empty.tif")
# rgb image
self.rgb_tif = os.path.join(self.datadir, "rgb.tif")
# points shapefilex
self.pts_geojson = os.path.join(self.datadir, "kura_whole_field.shp")
# polygon shapefile
self.square_crop = os.path.join(self.datadir, "square_crop.geojson")
# points shapefile
self.point_crop = os.path.join(self.datadir, "point_crop.geojson")

@pytest.fixture(scope="session")
def test_data():
Expand Down
24 changes: 23 additions & 1 deletion tests/test_geospatial_read_geotif.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,11 +15,33 @@ def test_geospatial_read_geotif_rgb(test_data):
"""Test for plantcv-geospatial."""
# read in small 5-band tif image
img = read_geotif(filename=test_data.rgb_tif, bands="R,G,B")
assert img.array_data.shape[2] == 4
assert img.pseudo_rgb.shape == (284, 261, 3)


def test_geospatial_read_geotif_bad_input(test_data):
"""Test for plantcv-geospatial."""
# read in small 5-band tif image
with pytest.raises(RuntimeError):
_ = read_geotif(filename=test_data.cropped_tif, bands="p")


def test_geospatial_read_geotif_bad_crop(test_data):
"""Test for plantcv-geospatial."""
# read in small 5-band tif image
with pytest.raises(RuntimeError):
_ = read_geotif(filename=test_data.empty_tif, bands="B,G,R,RE,N")


def test_geospatial_read_geotif_polygon_crop(test_data):
"""Test for plantcv-geospatial."""
# read in rgb image with a polygon-type shapefile
img = read_geotif(filename=test_data.rgb_tif, bands=[650, 560, 480],
cropto=test_data.square_crop)
assert img.pseudo_rgb.shape == (80, 83, 3)


def test_geospatial_read_geotif_point_crop(test_data):
"""Test for plantcv-geospatial."""
# read in rgb image with a polygon-type shapefile
img = read_geotif(filename=test_data.rgb_tif, bands="R,G,B", cropto=test_data.point_crop)
assert img.pseudo_rgb.shape == (41, 46, 3)
Binary file added tests/testdata/cropped_empty.tif
Binary file not shown.
11 changes: 11 additions & 0 deletions tests/testdata/point_crop.geojson
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
{
"type": "FeatureCollection",
"name": "point_crop",
"crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:EPSG::32615" } },
"features": [
{ "type": "Feature", "properties": { }, "geometry": { "type": "Point", "coordinates": [ 720198.797875224030577, 4302928.175875684246421 ] } },
{ "type": "Feature", "properties": { }, "geometry": { "type": "Point", "coordinates": [ 720199.770441700122319, 4302928.186563228257 ] } },
{ "type": "Feature", "properties": { }, "geometry": { "type": "Point", "coordinates": [ 720199.781129243900068, 4302927.310184645466506 ] } },
{ "type": "Feature", "properties": { }, "geometry": { "type": "Point", "coordinates": [ 720198.851312942570075, 4302927.352934820577502 ] } }
]
}
8 changes: 8 additions & 0 deletions tests/testdata/square_crop.geojson
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
{
"type": "FeatureCollection",
"name": "square_crop",
"crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:EPSG::32615" } },
"features": [
{ "type": "Feature", "properties": { }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 720200.657507826690562, 4302928.218625859357417 ], [ 720199.535315738874488, 4302929.041566723957658 ], [ 720198.855781324207783, 4302928.114928886294365 ], [ 720199.977973412023857, 4302927.291988021694124 ], [ 720200.657507826690562, 4302928.218625859357417 ] ] ] } }
]
}

0 comments on commit 5b9b308

Please sign in to comment.