-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #58 from damonge/adaptive_pixels
Adaptive pixels
- Loading branch information
Showing
12 changed files
with
597 additions
and
315 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
import numpy as np | ||
import healpy as hp | ||
import matplotlib.pyplot as plt | ||
import pyccl as ccl | ||
import os | ||
from astropy.io import fits | ||
|
||
# Hubble constant | ||
h = 0.7 | ||
|
||
nside = 128 | ||
npix = hp.nside2npix(nside) | ||
|
||
# We will make two bins (z_photo < 0.15 and z_photo > 0.15) | ||
nbins = 2 | ||
nz_h = 50 | ||
zsplit = 0.15 | ||
|
||
# This will contain the N(z) of the different bins | ||
nz_tot = np.zeros([nbins, nz_h]) | ||
sigz = 0.03 | ||
|
||
# These will be the density and ellipticity maps | ||
dmap = np.zeros([nbins, npix]) | ||
e1map = np.zeros([nbins, npix]) | ||
e2map = np.zeros([nbins, npix]) | ||
|
||
# Now we loop over all source files | ||
ifile = 0 | ||
while os.path.isfile('out_srcs_s1_%d.fits' % ifile): | ||
print("HI") | ||
hdulist = fits.open('out_srcs_s1_%d.fits' % ifile) | ||
d = hdulist[1].data | ||
n_g = len(d) | ||
|
||
# Generate random photo-z | ||
z_photo = d['Z_COSMO'] + sigz*(1+d['Z_COSMO'])*np.random.randn(n_g) | ||
|
||
# Split into 2 | ||
msk1 = z_photo <= zsplit | ||
msk2 = z_photo > zsplit | ||
|
||
# For each bin, add to the number and ellipticity maps | ||
for ibin, msk in enumerate([msk1, msk2]): | ||
dd = d[msk] | ||
|
||
pix = hp.ang2pix(nside, | ||
np.radians(90-dd['DEC']), | ||
np.radians(dd['RA'])) | ||
n = np.bincount(pix, minlength=npix) | ||
e1 = np.bincount(pix, minlength=npix, weights=dd['E1']) | ||
e2 = np.bincount(pix, minlength=npix, weights=dd['E2']) | ||
dmap[ibin, :] += n | ||
e1map[ibin, :] += e1 | ||
e2map[ibin, :] += e2 | ||
|
||
# Add also to N(z) | ||
nz, z_edges = np.histogram(dd['Z_COSMO'], bins=nz_h, | ||
range=[0., 0.5]) | ||
nz_tot[ibin, :] += nz | ||
ifile += 1 | ||
|
||
# Midpoint of N(z) histogram | ||
z_nz = 0.5*(z_edges[1:] + z_edges[:-1]) | ||
|
||
# Compute <e> map and overdensity map | ||
# Compute also shot noise level | ||
shotnoise = np.zeros(nbins) | ||
for ib in range(nbins): | ||
ndens = (np.sum(dmap[ib])+0.0)/(4*np.pi) | ||
shotnoise[ib] = 1./ndens | ||
e1map[ib, :] = e1map[ib]/dmap[ib] | ||
e1map[ib, dmap[ib] <= 0] = 0 | ||
e2map[ib, :] = e2map[ib]/dmap[ib] | ||
e2map[ib, dmap[ib] <= 0] = 0 | ||
dmap[ib, :] = (dmap[ib, :] + 0.0) / np.mean(dmap[ib] + 0.0) - 1 | ||
|
||
# Read P(k) theory prediction | ||
zs = [] | ||
pks_dd = [] | ||
pks_dm = [] | ||
pks_mm = [] | ||
z_pk = 0. | ||
while os.path.isfile("out_pk_srcs_pop0_z%.3lf.txt" % z_pk): | ||
ks, pdd, pdm, pmm = np.loadtxt("out_pk_srcs_pop0_z%.3lf.txt" % z_pk, unpack=True) | ||
# The delta-delta prediction involves some Fourier transforms that make it unstable | ||
# at high-k, so we just set it to zero. | ||
pdd[pmm<1E-30] = 0 | ||
pks_dd.append(pdd) | ||
pks_dm.append(pdm) | ||
pks_mm.append(pmm) | ||
zs.append(z_pk) | ||
z_pk += 0.1 | ||
# Reverse order (because CCL needs increasing scale factor - not redshift). | ||
# Also, CCL uses non-h units. | ||
zs = np.array(zs)[::-1] | ||
ks = np.array(ks) * h | ||
pks_dd = np.array(pks_dd)[::-1, :] / h**3 | ||
pks_dm = np.array(pks_dm)[::-1, :] / h**3 | ||
pks_mm = np.array(pks_mm)[::-1, :] / h**3 | ||
|
||
# Create CCL P(k) structures | ||
cosmo = ccl.Cosmology(Omega_c=0.25, Omega_b=0.05, h=h, n_s=0.96, sigma8=0.8) | ||
pk2d_dd = ccl.Pk2D(a_arr=1./(1+zs), lk_arr=np.log(ks), pk_arr=pks_dd, | ||
is_logp=False, extrap_order_hik=0, extrap_order_lok=0) | ||
pk2d_dm = ccl.Pk2D(a_arr=1./(1+zs), lk_arr=np.log(ks), pk_arr=pks_dm, | ||
is_logp=False, extrap_order_hik=0, extrap_order_lok=0) | ||
pk2d_mm = ccl.Pk2D(a_arr=1./(1+zs), lk_arr=np.log(ks), pk_arr=pks_mm, | ||
is_logp=False, extrap_order_hik=0, extrap_order_lok=0) | ||
# These can be evaluated as follows: | ||
print(pk2d_dd.eval(k=0.1, a=1/(1+0.2), cosmo=cosmo)) | ||
|
||
# Create a number counts and a weak lensing tracer for each of the bins | ||
tr_d = [ccl.NumberCountsTracer(cosmo, False, (z_nz, nz_tot[i]), bias=(z_nz, np.ones_like(z_nz))) | ||
for i in range(nbins)] | ||
tr_l = [ccl.WeakLensingTracer(cosmo, (z_nz, nz_tot[i])) for i in range(nbins)] | ||
|
||
# Compute power spectra. I'm only doing delta-delta here. | ||
pairs=[(0,0), (0,1), (1,1)] | ||
cl_dd_d = np.array([hp.anafast(dmap[p1], dmap[p2]) for p1, p2 in pairs]) | ||
larr = np.arange(3*nside) | ||
cl_dd_t = np.array([ccl.angular_cl(cosmo, tr_d[p1], tr_d[p2], larr, p_of_k_a=pk2d_mm) | ||
for p1, p2 in pairs]) | ||
|
||
# Compare C_ells with theory | ||
for i, (p1, p2) in enumerate(pairs): | ||
plt.figure() | ||
plt.title('d-%d d-%d' % (p1, p2)) | ||
if p1 == p2: | ||
nl = shotnoise[p1] | ||
plt.plot(larr, nl*np.ones_like(larr), 'k--', label='Shot noise') | ||
else: | ||
nl = 0 | ||
|
||
# Rebin to reduce noise | ||
cld = np.mean((cl_dd_d[i]-nl).reshape([-1, 6]), axis=1) | ||
clt = np.mean(cl_dd_t[i].reshape([-1, 6]), axis=1) | ||
l = np.mean(larr.reshape([-1, 6]), axis=1) | ||
msk = l<2*nside | ||
plt.plot(l[msk], cld[msk], 'k.', label='Sim') | ||
plt.plot(l[msk], clt[msk], 'r-', label='Prediction') | ||
plt.loglog() | ||
plt.xlabel(r'$\ell$', fontsize=15) | ||
plt.ylabel(r'$C_\ell$', fontsize=15) | ||
plt.legend(loc='lower left') | ||
|
||
# Plot N(z)s | ||
plt.figure() | ||
for n in nz_tot: | ||
plt.plot(z_nz, n) | ||
plt.plot(z_nz, np.sum(nz_tot, axis=0), 'k-') | ||
plt.xlabel(r'$z$', fontsize=15) | ||
plt.ylabel(r'$N(z)$', fontsize=15) | ||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.