Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix problems to work on tensorflow 1.12 #88

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion src/model/seq2seq.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,8 @@
from tensorflow.python.ops import nn_ops
from tensorflow.contrib.rnn.python.ops import rnn, rnn_cell
from tensorflow.python.ops import variable_scope
linear = rnn_cell._linear # pylint: disable=protected-access
from tensorflow.contrib.rnn.python.ops import core_rnn_cell
linear = core_rnn_cell._linear # pylint: disable=protected-access

def _extract_argmax_and_embed(embedding, output_projection=None,
update_embedding=True):
Expand Down
15 changes: 9 additions & 6 deletions src/model/seq2seq_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,22 +84,25 @@ def __init__(self, encoder_masks, encoder_inputs_tensor,
self.encoder_masks = encoder_masks

# Create the internal multi-layer cell for our RNN.
single_cell = tf.contrib.rnn.core_rnn_cell.BasicLSTMCell(attn_num_hidden, forget_bias=0.0, state_is_tuple=False)

if use_gru:
print("using GRU CELL in decoder")
single_cell = tf.contrib.rnn.core_rnn_cell.GRUCell(attn_num_hidden)
cell = single_cell
single_cell = tf.contrib.rnn.GRUCell(attn_num_hidden)
else:
single_cell = tf.contrib.rnn.BasicLSTMCell(attn_num_hidden, forget_bias=0.0, state_is_tuple=False)

if attn_num_layers > 1:
cell = tf.contrib.rnn.core_rnn_cell.MultiRNNCell([single_cell] * attn_num_layers, state_is_tuple=False)
cell = tf.contrib.rnn.MultiRNNCell([single_cell] * attn_num_layers, state_is_tuple=False)
else:
cell = single_cell

# The seq2seq function: we use embedding for the input and attention.
def seq2seq_f(lstm_inputs, decoder_inputs, seq_length, do_decode):

num_hidden = attn_num_layers * attn_num_hidden
lstm_fw_cell = tf.contrib.rnn.core_rnn_cell.BasicLSTMCell(num_hidden, forget_bias=0.0, state_is_tuple=False)
lstm_fw_cell = tf.contrib.rnn.BasicLSTMCell(num_hidden, forget_bias=0.0, state_is_tuple=False)
# Backward direction cell
lstm_bw_cell = tf.contrib.rnn.core_rnn_cell.BasicLSTMCell(num_hidden, forget_bias=0.0, state_is_tuple=False)
lstm_bw_cell = tf.contrib.rnn.BasicLSTMCell(num_hidden, forget_bias=0.0, state_is_tuple=False)

pre_encoder_inputs, output_state_fw, output_state_bw = tf.contrib.rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, lstm_inputs,
initial_state_fw=None, initial_state_bw=None,
Expand Down