Skip to content
This repository has been archived by the owner on Jun 17, 2022. It is now read-only.

d4rk-lucif3r/LuciferML

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Note: LuciferML is now deprecated and is being extended as ANAI.

https://github.com/d4rk-lucif3r/LuciferML/blob/master/assets/img/LUCIFER-ML.gif

LuciferML a Semi-Automated Machine Learning Library by d4rk-lucif3r

Downloads Downloads ReadTheDocs

About

The LuciferML is a Semi-Automated Machine Learning Python Library that works with tabular data. It is designed to save time while doing data analysis. It will help you right from data preprocessing to Data Prediction.

The LuciferML will help you with

  1. Preprocessing Data:
    • Encoding
    • Splitting
    • Scaling
    • Dimensionality Reduction
    • Resampling
  2. Trying many different machine learning models with hyperparameter tuning,

Installation

pip install lucifer-ml

Available Preprocessing Techniques

  1. Skewness Correction

    Takes Pandas Dataframe as input. Transforms each column in dataset except the columns given as an optional parameter. Returns Transformed Data.

    Example:

      1) All Columns
    
                  from luciferml.preprocessing import Preprocess as pp
                  import pandas as pd
                  dataset = pd.read_csv('/examples/Social_Network_Ads.csv')
                  prep = pp(dataset, dataset.columns)
                  dataset = prep.skewcorrect(dataset)
    
      2) Except column/columns
    
                  from luciferml.preprocessing import Preprocess as pp
                  import pandas as pd
                  dataset = pd.read_csv('/examples/Social_Network_Ads.csv')
                  prep = pp(dataset, dataset.columns, except_columns=['Purchased'])
                  dataset = prep.skewcorrect()
    

    More about Preprocessing here

Available Modelling Techniques

  1. Classification

    Available Models for Classification

     - 'lr'  : 'Logistic Regression',
     - 'sgd' : 'Stochastic Gradient Descent',
     - 'perc': 'Perceptron',
     - 'pass': 'Passive Aggressive Classifier',
     - 'ridg': 'Ridge Classifier', 
     - 'svm' : 'Support Vector Machine',
     - 'knn' : 'K-Nearest Neighbours',
     - 'dt'  : 'Decision Trees',
     - 'nb'  : 'Naive Bayes',
     - 'rfc' : 'Random Forest Classifier',
     - 'gbc' : 'Gradient Boosting Classifier',
     - 'ada' : 'AdaBoost Classifier',
     - 'bag' : 'Bagging Classifier',
     - 'extc': 'Extra Trees Classifier',
     - 'lgbm': 'LightGBM Classifier',
     - 'cat' : 'CatBoost Classifier',
     - 'xgb' : 'XGBoost Classifier',
     - 'ann' : 'Multilayer Perceptron Classifier',
     - 'all' : 'Applies all above classifiers'
    

    Example:

     from luciferml.supervised.classification import Classification
     dataset = pd.read_csv('Social_Network_Ads.csv')
     X = dataset.iloc[:, :-1]
     y = dataset.iloc[:, -1]
     classifier = Classification(predictor = ['lr'])
     classifier.fit(X, y)
     result = classifier.result()
    

    More About Classification

  2. Regression

    Available Models for Regression
    
     - 'lin' : 'Linear Regression',
     - 'sgd' : 'Stochastic Gradient Descent Regressor',
     - 'elas': 'Elastic Net Regressot',
     - 'krr' : 'Kernel Ridge Regressor',
     - 'br'  : 'Bayesian Ridge Regressor',
     - 'svr' : 'Support Vector Regressor',
     - 'knr' : 'K-Nearest Regressor',
     - 'dt'  : 'Decision Trees',
     - 'rfr' : 'Random Forest Regressor',
     - 'gbr' : 'Gradient Boost Regressor',
     - 'ada' : 'AdaBoost Regressor',
     - 'bag' : 'Bagging Regressor',
     - 'extr': 'Extra Trees Regressor',
     - 'lgbm': 'LightGBM Regressor',
     - 'xgb' : 'XGBoost Regressor',
     - 'cat' : 'Catboost Regressor',
     - 'ann' : 'Multilayer Perceptron Regressor',
     - 'all' : 'Applies all above regressors'
    

    Example:

     from luciferml.supervised.regression import Regression
     dataset = pd.read_excel('examples\Folds5x2_pp.xlsx')
     X = dataset.iloc[:, :-1]
     y = dataset.iloc[:, -1]
     regressor = Regression(predictor = ['lin'])
     regressor.fit(X, y)
     result = regressor.result()
    

    More about Regression here

Hyperparameter Tuning

LuciferML is powered by Optuna for Hyperparam tuning. Just add "tune = True" in either Regressor or Classifier it will start tuning the model/s with Optuna.

Persistence

LuciferML's model can be saved as a pickle file. It will save both the model and the scaler to the pickle file.

- Saving

    Ex: 
        regressor.save([<path-to-model.pkl>, <path-to-scaler.pkl>])

A new LuciferML Object can be loaded as well by specifying path of model and scaler

- Loading

    Ex: 
        regressor = Regression(path = [<path-to-model.pkl>, <path-to-scaler.pkl>])

These are applicable for both Classification and Regression.

Examples

Please refer to more examples here