This is the unofficial implementation of the paper CaDDN for personal study. This codebase is based on https://github.com/xinzhuma/monodle.
This repo is tested on our local environment (python=3.7, cuda=10.1, pytorch=1.4)
conda create -n CaDDN python=3.7
Then, activate the environment:
conda activate CaDDN
Install PyTorch:
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch
and other requirements:
pip install -r requirements.txt
python setup.py develop
Please download KITTI dataset and organize the data as follows:
#ROOT
|data/
|KITTI/
|ImageSets/
|object/
|training/
|calib/
|image_2/
|velodyne/
|label/
|testing/
|calib/
|image_2/
|image_3/
Move to the workplace and train the network:
cd #ROOT
cd experiments/example
CUDA_VISIBLE_DEVICES=0,1 bash ./train.sh 2 kitti_example.yaml