v1.0.9
szczepanskiNicolas
released this
17 Nov 17:16
·
226 commits
to main
since this release
New metrics (documentation page is in progress)
For binary classification:
- accuracy
- precision
- recall
- f1_score
- specificity
- tp, tn, fp, fn
For multiclass classification:
- micro_averaging_accuracy
- micro_averaging_precision
- micro_averaging_recall
- macro_averaging_accuracy
- macro_averaging_precision
- macro_averaging_recall
For regression:
- mean_squared_error
- root_mean_squared_error
- mean_absolute_error
Examples:
labels = [1,1,1,1,1,0,0,0,0,0]
predictions = [1,1,1,1,1,0,0,0,0,0]
metrics = Tools.Metric.compute_metrics_binary_classification(labels, predictions)
learner = Learning.Scikitlearn("tests/dermatology.csv", learner_type=Learning.CLASSIFICATION)
models = learner.evaluate(method=Learning.K_FOLDS, output=Learning.DT, test_size=0.2)
for id, models in enumerate(models):
metrics = learner.get_details()[id]["metrics"]