Skip to content

v1.0.9

Compare
Choose a tag to compare
@szczepanskiNicolas szczepanskiNicolas released this 17 Nov 17:16
· 226 commits to main since this release

New metrics (documentation page is in progress)

For binary classification:

  • accuracy
  • precision
  • recall
  • f1_score
  • specificity
  • tp, tn, fp, fn

For multiclass classification:

  • micro_averaging_accuracy
  • micro_averaging_precision
  • micro_averaging_recall
  • macro_averaging_accuracy
  • macro_averaging_precision
  • macro_averaging_recall

For regression:

  • mean_squared_error
  • root_mean_squared_error
  • mean_absolute_error

Examples:

labels = [1,1,1,1,1,0,0,0,0,0]
predictions = [1,1,1,1,1,0,0,0,0,0]
metrics = Tools.Metric.compute_metrics_binary_classification(labels, predictions)
learner = Learning.Scikitlearn("tests/dermatology.csv", learner_type=Learning.CLASSIFICATION)
models = learner.evaluate(method=Learning.K_FOLDS, output=Learning.DT, test_size=0.2)
for id, models in enumerate(models):
     metrics = learner.get_details()[id]["metrics"]