- Analysis use Bamboo RDataFrame and works with NanoAODv
{5,7,8 and 9}
, check.yml
configuration inbamboo_/config/
directory to run ZA anslysis with your favourite NanoAOD version. - You can find more about Bamboo in the UserGuide. Also feel free to report any issue you encounter in ~bamboo channel on the CERN mattermost, or on Gitlab.
mkdir bamboodev
cd bamboodev
# make a virtualenv
source /cvmfs/sft.cern.ch/lcg/views/LCG_100/x86_64-centos7-gcc10-opt/setup.sh
python -m venv bamboovenv
source bamboovenv/bin/activate
# clone and install bamboo
git clone -o upstream https://gitlab.cern.ch/cp3-cms/bamboo.git
pip install ./bamboo
# clone and install plotIt
git clone -o upstream https://github.com/cp3-llbb/plotIt.git
mkdir build-plotit
cd build-plotit
cmake -DCMAKE_INSTALL_PREFIX=$VIRTUAL_ENV ../plotIt
make -j2 install
cd -
#To use scalefactors and weights in the new CMS JSON format, the correctionlib package should be installed with
pip install --no-binary=correctionlib correctionlib
- In your
~/.bashrc
add:
function cms_env() {
module purge
module load grid/grid_environment_sl6
/cvmfs/cms.cern.ch/cmsset_default.sh
module load crab/crab3
module load slurm/slurm_utils
module load cms/cmssw
}
alias bamboo_env="source /cvmfs/sft.cern.ch/lcg/views/LCG_100/x86_64-centos7-gcc10-opt/setup.sh"
alias bambooenv="source $HOME/bamboodev/bamboovenv/bin/activate"
- Then every time you want to setup your bamboo enviroment:
cms_env
voms-proxy-init --voms cms
bamboo_env
bambooenv
cd bamboodev/bamboo
git checkout master
git pull upstream master
pip install --upgrade .
# if the previous did not work try :
# python -m pip install --upgrade .
cd (path to)/plotIt/build-plotit
rm CMakeCache.txt
cmake -DCMAKE_INSTALL_PREFIX=$VIRTUAL_ENV ..
make -j4 install
I do recommend to test locally first with --maxFiles=1
, to check that the module runs correctly in all cases before submitting to a batch system. If all right you can submit to slurm with --distributed=driver
. Avoid as well using -v/--verbose
for slurm submission, will make your jobs slower.
-s
/--systematics
add to your plots PSweight (FSR , ISR), PDFs and six QCD scale variations, ele_id, ele_reco, pu, BtagWeight, DY, top ...-v
/--verbose
: give you more print out for debugging.-m
/--module
: your analysis script.-dnn
/--DNN_Evaluation
: Pass TensorFlow model and evaluate DNN output--split
: if True run2 reduced set of JES uncertainty splited by sources and JER systematic variation will be splitted between kinematics regions to decorrelate the nuisance parameters.--hlt
: Produce HLT efficiencies maps--blinded
: blinded data from 0.6 to 1 bin for the dnn output--nanoaodversion
: EOY-latestv7
or Ulegacy campaign-working versionv8
or the latestv9
--doMETT1Smear
: This correction is a propagation of L2L3 JEC to pfMET, see MET Type1 and Type2 corrections for more details.--dobJetEnergyRegression
:--yields
:--skim
:--backend
:
Note: Tensorflow does not work on ingrid-ui1
, you need to run on a worker node with a more recent CPU, so run as follow before bambooRun
command whenever -dnn
flag is set to True
:
srun --partition=cp3 --qos=cp3 --time=0-02:00:00 --pty bash
bambooRun --distributed=driver -v -s -m ZAtollbb.py:NanoHtoZA config/choose_One_.yml -o ~/path_to_your_Output_dir/
In case you want to run plotIt again (after changing few options such fill color, legend position, unable systematics, etc...)
plotIt -i /path_to_your_dir/ -o /path_to_your_dir/plots_{add_era: 2016, 2017 or 2018} -y -e era /path_to_your_Output_dir/plots.yml
Or simply run with --onlypost
as follow:
bambooRun --onlypost -v -s -m ZAtollbb.py:NanoHtoZA config/choose_One_.yml -o ~/path_to_your_Output_dir/
You can run bambooRun
command for differnt --args
or you can use runSkimmer.py
to submit all of them at once.
python runSkimmer.py --process ggH --output skim_dir --submit
# ZAtollbbSkimmer is deprecated( please use the command above)
bambooRun --distributed=driver -sel 2Lep2bJets -reg resolved -cat MuMu -Tag DeepFlavour -wp M -proc ggH -s -m ZAtollbbSkimmer.py:Skimedtree_NanoHtoZA config/*.yml -o ~/path_to_your_Output_dir/
--submit
:driver
,worker
,max1
oronlypost
.--driver
option will submit the independent tasks to a batch scheduler (currently HTCondor and Slurm are supported) instead of running them sequentially, wait for the results to be ready, and combine them (the worker tasks will run the same module, but with--worker
and the actual input and results file names as input and output arguments).max1
same as--maxFiles=1
-o
/--output
: skim output dir-p
/--process
:ggH
for gg-fusion andbbH
for b-associated production-s
/--systematics
: add systematics variations
bambooRun --distributed=driver -v -s -m BtagEfficiencies.py:ZA_BTagEfficiencies config/mc.yml -o outputdir