Project moved to https://gitlab.cern.ch/aguzel/HHtoWWbb_Run3
----WORK IN PROGRESS----
This repository uses the bamboo analysis framework, you can install it via the instructions here: https://bamboo-hep.readthedocs.io/en/latest/install.html#fresh-install
Then clone this repository in the parent directory containing the bamboo installation:
git clone https://github.com/cp3-llbb/HHtoWWbb_Run3.git && cd HHtoWWbb_Run3
Execute these each time you start from a clean shell on lxplus or any other machine with an cvmfs:
source /cvmfs/sft.cern.ch/lcg/views/LCG_102/x86_64-centos7-gcc11-opt/setup.sh
source (path to your bamboo installation)/bamboovenv/bin/activate
export PYTHONPATH="${PYTHONPATH}:${PWD}/python/"
and the followings before submitting jobs to the batch system (HTCondor, Slurm, Dask and Spark are supported):
voms-proxy-init --voms cms -rfc --valid 192:00
export X509_USER_PROXY=$(voms-proxy-info -path)
if you encounter problems with accessing files when using batch, the following lines may solve your problem
voms-proxy-init --voms cms -rfc --valid 192:00 --out ~/private/gridproxy/x509
export X509_USER_PROXY=$HOME/private/gridproxy/x509
Then plot various control regions via the following command line using batch (you can pass --maxFiles 1
to use only 1 file from each sample for a quick test):
bambooRun -m python/controlPlotter.py config/2022_v12.yml -o ./outputDir/ --distributed driver --envConfig config/cern.ini --eras combined -c <DL or SL> --samples config/2022_v12_samples.yml
Instead of passing everytime --envConfig config/cern.ini
, you can copy the content of that file to ~/.config/bamboorc
.
then to produce plots, just execute:
./scripts/plot_<SL or DL>.sh <path to output/plots>
using the parquet
output file that contains skims and the DNN.py file, you can perform machine learning applications;
python DNN.py -s <path-to-the-skim-file> -o <path-to-an-output-directory>
Then passing --mvaModels=<path-to-dnn-outputs>
option, you can apply DNN score cuts on your analysis.