-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
39b0184
commit caadd84
Showing
5 changed files
with
498 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,98 @@ | ||
# roll-calc | ||
Roll (spiral) calculator functions. | ||
|
||
Roll calculator functions. | ||
|
||
This module was created for calculating dimesions of materials in rolls for inventory and winding machines. | ||
|
||
## Install | ||
|
||
```sh | ||
npm install roll-calc | ||
``` | ||
|
||
## Usage | ||
|
||
```js | ||
import { rollSolve } from 'roll-calc'; | ||
|
||
const materialHeight = 0.06; | ||
const innerDiameter = 18; | ||
const outerDiameter = 60; | ||
const length = rollSolve(materialHeight, innerDiameter, outerDiameter); | ||
|
||
console.log(length); | ||
//=> 42882.74547004675 | ||
``` | ||
|
||
## API | ||
|
||
### `function rollLength(h: number, d0: number, d1: number): number` | ||
|
||
Calculates length of a roll (2D spiral). | ||
|
||
Equations from https://www.giangrandi.ch/soft/spiral/spiral.shtml | ||
|
||
```js | ||
import { rollLength } from 'roll-calc'; | ||
|
||
const materialHeight = 0.1; | ||
const innerDiameter = 2; | ||
const outerDiameter = 3; | ||
const length = rollLength(materialHeight, innerDiameter, outerDiameter); | ||
|
||
console.log(length); | ||
//=> 39.27313461871492 | ||
``` | ||
|
||
### `function rollOuterDiameter(h: number, d0: number, l: number, maxIter?: number): number` | ||
|
||
Calcuates the outer diameter of a roll (2D spiral). | ||
|
||
```js | ||
import { rollOuterDiameter } from 'roll-calc'; | ||
|
||
const materialHeight = 0.1; | ||
const innerDiameter = 2; | ||
const length = 39.273_134_62; | ||
const outerDiameter = rollOuterDiameter(materialHeight, innerDiameter, length); | ||
|
||
console.log(outerDiameter); | ||
//=> 3.0000000000272684 | ||
``` | ||
|
||
### `function rollInnerDiameter(h: number, d1: number, l: number): number` | ||
|
||
Calculates the inner diameter of a roll (2D spiral). | ||
|
||
```js | ||
import { rollInnerDiameter } from 'roll-calc'; | ||
|
||
const materialHeight = 0.1; | ||
const outerDiameter = 3; | ||
const length = 39.273_134_62; | ||
const innerDiameter = rollInnerDiameter(materialHeight, innerDiameter, length); | ||
|
||
console.log(innerDiameter); | ||
//=> 1.999999999959101 | ||
``` | ||
|
||
### `rollMaterialHeight(d0: number, d1: number, l: number): number` | ||
|
||
Calculates the nominal material height or thickness in a roll (2D Spiral). | ||
|
||
Equations from: | ||
> Thickness of Material on a Roll Winding: Machines, Mechanics and Measurements | ||
By James K. Good, David R. Roisum | ||
page 124 | ||
|
||
```js | ||
import { rollMaterialHeight } from 'roll-calc'; | ||
|
||
const innerDiameter = 2; | ||
const outerDiameter = 3; | ||
const length = 39.273_134_62; | ||
const materialHeight = rollMaterialHeight(innerDiameter, outerDiameter, length); | ||
|
||
console.log(materialHeight); | ||
//=> 0.09999178458720241 | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
/** | ||
Calculates lenght of a roll (2D spiral). | ||
Equations from https://www.giangrandi.ch/soft/spiral/spiral.shtml | ||
@example | ||
``` | ||
import { rollLength } from 'roll-calc'; | ||
const materialHeight = 0.1; | ||
const innerDiameter = 2; | ||
const outerDiameter = 3; | ||
const length = rollLength(materialHeight, innerDiameter, outerDiameter); | ||
console.log(length); | ||
//=> 39.27313461871492 | ||
``` | ||
@param h - Material height (thickness); 0 < h < Infinity | ||
@param d0 - Inner diameter; h < d0 > d1 | ||
@param d1 - Outer diameter; d0 < d1 < Infinity | ||
@returns calculated roll length | ||
*/ | ||
export function rollLength(h: number, d0: number, d1: number): number | undefined; | ||
|
||
/** | ||
Calcuates the outer diameter of a roll (2D spiral). | ||
@example | ||
``` | ||
import { rollOuterDiameter } from 'roll-calc'; | ||
const materialHeight = 0.1; | ||
const innerDiameter = 2; | ||
const length = 39.273_134_62; | ||
const outerDiameter = rollOuterDiameter(materialHeight, innerDiameter, length); | ||
console.log(outerDiameter); | ||
//=> 3.0000000000272684 | ||
``` | ||
@param h - Material height (thickness); 0 < h < Infinity | ||
@param d0 - Inner diameter; h < d0 > Infinity | ||
@param l - Roll Length; pi * d0 <= l < Infinity | ||
@param maxIter - Maximum number of interation for convergence of the Newton's method; default 10 | ||
@returns calculated outer diameter | ||
*/ | ||
export function rollOuterDiameter(h: number, d0: number, l: number, maxIter?: number): number | undefined; | ||
|
||
/** | ||
Calculates the inner diameter of a roll (2D spiral). | ||
@example | ||
``` | ||
import { rollInnerDiameter } from 'roll-calc'; | ||
const materialHeight = 0.1; | ||
const outerDiameter = 3; | ||
const length = 39.273_134_62; | ||
const innerDiameter = rollInnerDiameter(materialHeight, innerDiameter, length); | ||
console.log(innerDiameter); | ||
//=> 1.999999999959101 | ||
``` | ||
@param h - Material height (thickness); 0 < h < Infinity | ||
@param d1 - Outer diameter; h < d1 < Infinity | ||
@param l - Roll Length; pi * d1 <= l < Infinity | ||
@returns calculated inner diameter | ||
*/ | ||
export function rollInnerDiameter(h: number, d1: number, l: number): number | undefined; | ||
|
||
/** | ||
Calculates the nominal material height or thickness in a roll (2D Spiral). | ||
Equations from: | ||
Thickness of Material on a Roll Winding: Machines, Mechanics and Measurements | ||
By James K. Good, David R. Roisum | ||
page 124 | ||
@example | ||
``` | ||
import { rollMaterialHeight } from 'roll-calc'; | ||
const innerDiameter = 2; | ||
const outerDiameter = 3; | ||
const length = 39.273_134_62; | ||
const materialHeight = rollMaterialHeight(innerDiameter, outerDiameter, length); | ||
console.log(materialHeight); | ||
//=> 0.09999178458720241 | ||
``` | ||
@param d0 - Inner diameter; 0 < d0 > d1 | ||
@param d1 - Outer diameter; d0 < d1 < Infinity | ||
@param l - Roll Length; pi * d1 <= l < Infinity | ||
@returns calculated material height (thickness) | ||
*/ | ||
export function rollMaterialHeight(d0: number, d1: number, l: number): number | undefined; | ||
|
||
/** | ||
Solves one missing dimension of a roll (2D spiral). | ||
Pass in at least three arguments to solve for the fourth. | ||
@example | ||
``` | ||
import { rollSolve } from 'roll-calc'; | ||
const materialHeight = 0.06; | ||
const innerDiameter = 18; | ||
const outerDiameter = 60; | ||
const length = rollSolve(materialHeight, innerDiameter, outerDiameter, undefined); | ||
console.log(length); | ||
//=> 42882.74547004675 | ||
``` | ||
@param h - Material height; 0 < h > Infinity | ||
@param d0 - Inner diameter; 0 < d0 > Infinity | ||
@param d1 - Outer diameter; 0 < d1 < Infinity | ||
@param l - Roll Length; 0 < l < Infinity | ||
@returns calculated material height (thickness) | ||
*/ | ||
export function rollSolve(h?: number, d0?: number, d1?: number, l?: number): number | undefined; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
const {sqrt, PI} = Math; | ||
const notFinite = n => !Number.isFinite(n); | ||
|
||
function getExactLength(phi0, phi1, h) { | ||
let length; | ||
length = (phi1 / 2) * sqrt((phi1 * phi1) + 1); | ||
length += (1 / 2) * Math.log(phi1 + sqrt((phi1 * phi1) + 1)); | ||
length -= (phi0 / 2) * sqrt((phi0 * phi0) + 1); | ||
length -= (1 / 2) * Math.log(phi0 + sqrt((phi0 * phi0) + 1)); | ||
length *= h / (2 * PI); | ||
return length; | ||
} | ||
|
||
function getExactDeltaLengthDeltaPhi(phi, h) { | ||
let delta; | ||
const phi2 = phi * phi; | ||
delta = ((2 * phi2) + 1) / (2 * sqrt(phi2 + 1)); | ||
delta += (phi + sqrt(phi2 + 1)) / ((2 * phi * sqrt(phi2 + 1)) + (2 * phi2) + 2); | ||
delta *= h / (2 * PI); | ||
return delta; | ||
} | ||
|
||
export function rollLength(h, d0, d1) { | ||
if (notFinite(h) | ||
|| notFinite(d0) | ||
|| notFinite(d1) | ||
|| h <= 0 | ||
|| d0 <= 0 | ||
|| d1 <= 0 | ||
|| h > d0 | ||
|| d0 >= d1 | ||
) { | ||
return; | ||
} | ||
|
||
const phi0 = PI * d0 / h; | ||
const phi1 = PI * d1 / h; | ||
return getExactLength(phi0, phi1, h); | ||
} | ||
|
||
export function rollOuterDiameter(h, d0, l, maxIter = 10) { | ||
if (notFinite(h) | ||
|| notFinite(d0) | ||
|| notFinite(l) | ||
|| h <= 0 | ||
|| d0 <= 0 | ||
|| h > d0 | ||
|| l < PI * d0 | ||
) { | ||
return; | ||
} | ||
|
||
/* To find "phi1" from L(phi1)=(h/2pi)(...) we have to numerically solve | ||
* (h/2pi)(...)-L=0, so we have f(phi1)=(h/2pi)(...)-L=0 | ||
* The approximate formula is used to find a starting point, from which we | ||
* use Newton's method to find a more accurate numerical solution as follows: | ||
* | ||
* phi_n+1 = phi_n - (f(phi_n)/f'(phi_n)) | ||
* | ||
* Whith this method, there is no need to invert the function, it's only | ||
* necessary to find it's derivative. It converges quite quickly and only a | ||
* few iterations are required for the precision of the floating point | ||
* variable used. | ||
*/ | ||
const n = (h - d0 + sqrt((((d0 - h) * (d0 - h)) + (4 * h * l)) / PI)) / (2 * h); | ||
let d1 = (2 * n * h) + d0; | ||
const phi0 = PI * d0 / h; | ||
let phi1 = PI * d1 / h; | ||
let deltaPhi; | ||
// This is the starting approximation. | ||
for (let i = 0; i <= maxIter; i++) { | ||
deltaPhi = (getExactLength(phi0, phi1, h) - l) / getExactDeltaLengthDeltaPhi(phi1, h); | ||
phi1 -= deltaPhi; | ||
// Stop looping if solution already found. | ||
if (deltaPhi === 0) { | ||
break; | ||
} | ||
} | ||
|
||
// Now we have phi1 and we find d1. | ||
d1 = phi1 * h / PI; | ||
// Note we could find a more accurate n if needed with: | ||
// n = (d1 - d0) / (2 * h); | ||
return d1; | ||
} | ||
|
||
export function rollInnerDiameter(h, d1, l) { | ||
if (notFinite(h) | ||
|| notFinite(d1) | ||
|| notFinite(l) | ||
|| h <= 0 | ||
|| d1 <= h | ||
|| l < PI * d1 | ||
) { | ||
return; | ||
} | ||
|
||
const minOuterDia = rollOuterDiameter(h, h, l); | ||
const length = rollLength(h, minOuterDia, d1); | ||
return rollOuterDiameter(h, h, length); | ||
} | ||
|
||
export function rollMaterialHeight(d0, d1, l) { | ||
if (notFinite(d0) | ||
|| notFinite(d1) | ||
|| notFinite(l) | ||
|| d0 <= 0 | ||
|| d1 <= d0 | ||
|| l < PI * d1 | ||
) { | ||
return; | ||
} | ||
|
||
return (PI / (4 * l)) * ((d1 ** 2) - (d0 ** 2)); | ||
} | ||
|
||
export function rollSolve(h, d0, d1, l) { | ||
if (h && d0 && d1 && l) { | ||
// Nothing to solve. | ||
return; | ||
} | ||
|
||
if (h && d0 && d1 && !l) { | ||
return rollLength(h, d0, d1); | ||
} | ||
|
||
if (h && d0 && l && !d1) { | ||
return rollOuterDiameter(h, d0, l); | ||
} | ||
|
||
if (h && d1 && l && !d0) { | ||
return rollInnerDiameter(h, d1, l); | ||
} | ||
|
||
if (d0 && d1 && l && !h) { | ||
return rollMaterialHeight(d0, d1, l); | ||
} | ||
} |
Oops, something went wrong.