Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adapt to math-comp/math-comp#1131 #85

Merged
merged 2 commits into from
Dec 5, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions refinements/examples/irred.v
Original file line number Diff line number Diff line change
Expand Up @@ -196,15 +196,15 @@ Section enumerable.
Context (T : finType) (T' : Type) (RT : T -> T' -> Type).
Variable (N : Type) (rN : nat -> N -> Type).
Context (enumT' : seq T')
{enumR : refines (perm_eq \o (list_R RT)) (@Finite.enum T) enumT'}.
{enumR : refines (perm_eq \o list_R RT) (@Finite.enum T) enumT'}.
Context `{zero_of N} `{one_of N} `{add_of N}.
Context `{!refines rN 0%N 0%C}.
Context `{!refines rN 1%N 1%C}.
Context `{!refines (rN ==> rN ==> rN)%rel addn add_op}.
Context `{!refines (rN ==> rN ==> rN) addn add_op}.
Context (P : pred T) (P' : pred T').

#[export] Instance refines_card :
(forall x x' `{!refines RT x x'}, refines (bool_R \o (@unify _)) (P x) (P' x')) ->
(forall x x' `{!refines RT x x'}, refines (bool_R \o @unify _) (P x) (P' x')) ->
refines rN #|[pred x | P x]| (card' enumT' P').
Proof.
move=> RP; have := refines_comp_unify (RP _ _ _) => /refines_abstr => {}RP.
Expand Down Expand Up @@ -274,13 +274,13 @@ Context (iter' : forall T, N -> (T -> T) -> T -> T)
{iterR : forall T T' RT,
refines (rN ==> (RT ==> RT) ==> RT ==> RT) (@iter T) (@iter' T')}.
Context (enumC : seq C)
{enumR : refines (perm_eq \o (list_R rAC)) (@Finite.enum A) enumC}.
{enumR : refines (perm_eq \o list_R rAC) (@Finite.enum A) enumC}.

Definition Rnpoly : {poly_n A} -> {poly A} -> Type :=
fun p q => p = q :> {poly A}.

Definition RnpolyC : {poly_n A} -> seqpoly C -> Type :=
(Rnpoly \o (RseqpolyC rAC))%rel.
(Rnpoly \o RseqpolyC rAC)%rel.

#[export] Instance refines_enum_npoly :
refines (perm_eq \o list_R RnpolyC)
Expand Down
1 change: 1 addition & 0 deletions refinements/refinements.v
Original file line number Diff line number Diff line change
Expand Up @@ -205,6 +205,7 @@ Qed.

End refinements.

Arguments refines [A B]%type R%rel m n.
Arguments refinesP {T T' R x y} _.

#[export] Hint Mode refines - - - + - : typeclass_instances.
Expand Down
4 changes: 2 additions & 2 deletions refinements/seqmx.v
Original file line number Diff line number Diff line change
Expand Up @@ -666,7 +666,7 @@ Qed.
(rn : nat_R n1 n2) f g
`{forall x y, refines (rI rm) x y ->
forall z t, refines (rI rn) z t ->
refines (rAC \o (@unify _)) (f x z) (g y t)} :
refines (rAC \o @unify _) (f x z) (g y t)} :
refines (RseqmxC rm rn)
(\matrix_(i, j) f i j) (seqmx_of_fun (I:=I) g).
Proof.
Expand All @@ -680,7 +680,7 @@ Qed.
#[export] Instance refine_seqmx_of_fun m n f g
`{forall x y, refines (rI (nat_Rxx m)) x y ->
forall z t, refines (rI (nat_Rxx n)) z t ->
refines (rAC \o (@unify _)) (f x z) (g y t)} :
refines (rAC \o @unify _) (f x z) (g y t)} :
refines (RseqmxC (nat_Rxx m) (nat_Rxx n))
(\matrix_(i, j) f i j) (seqmx_of_fun (I:=I) g).
Proof. exact: RseqmxC_seqmx_of_fun. Qed.
Expand Down
2 changes: 1 addition & 1 deletion refinements/seqpoly.v
Original file line number Diff line number Diff line change
Expand Up @@ -460,7 +460,7 @@ Context `{!refines (rN ==> rN ==> bool_R) eqtype.eq_op eq_op}.
Context `{!refines (rN ==> nat_R) spec_id spec}.

Definition RseqpolyC : {poly R} -> seq C -> Type :=
(Rseqpoly \o (list_R rAC)).
(Rseqpoly \o list_R rAC)%rel.

#[export] Instance RseqpolyC_cons :
refines (rAC ==> RseqpolyC ==> RseqpolyC) (@cons_poly R) cons.
Expand Down
Loading