Skip to content

computational-imaging/GraphPDE

Repository files navigation

Learning to Solve PDE-constrained Inverse Problems with Graph Networks | ICML 2022

Official PyTorch implementation.
Learning to Solve PDE-constrained Inverse Problems with Graph Networks
Qingqing Zhao*, David B. Lindell, Gordon Wetzstein
Stanford University

Set up environment

To setup a conda environment use these commands

conda env create -f environment.yml
conda activate gnn

We also need to install pytorch and pytorch-geometric with following commands:

pip install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html

wget https://data.pyg.org/whl/torch-1.10.0%2Bcu113/torch_cluster-1.5.9-cp37-cp37m-linux_x86_64.whl
pip install torch_cluster-1.5.9-cp37-cp37m-linux_x86_64.whl
wget https://data.pyg.org/whl/torch-1.10.0%2Bcu113/torch_scatter-2.0.9-cp37-cp37m-linux_x86_64.whl
pip install torch_scatter-2.0.9-cp37-cp37m-linux_x86_64.whl
wget https://data.pyg.org/whl/torch-1.10.0%2Bcu113/torch_sparse-0.6.12-cp37-cp37m-linux_x86_64.whl
pip install torch_sparse-0.6.12-cp37-cp37m-linux_x86_64.whl
wget https://data.pyg.org/whl/torch-1.10.0%2Bcu113/torch_spline_conv-1.2.1-cp37-cp37m-linux_x86_64.whl
pip install torch_spline_conv-1.2.1-cp37-cp37m-linux_x86_64.whl
pip install torch-geometric

Solve Inverse Problem

Dataset and pretrained model and validation samples can be download here. Unzip the data.zip folder in the root directory.

Now you can solve invere problem with 2D wave equation with the following commands.

# with prior
python InverseProblem/experiment_scripts/run_gnn.py  --config InverseProblem/config/density_gnn_p.ini
python InverseProblem/experiment_scripts/run_gnn.py  --config InverseProblem/config/init_state_gnn_p.ini 
# without prior
python InverseProblem/experiment_scripts/run_gnn.py  --config InverseProblem/config/density_gnn_np.ini 
python InverseProblem/experiment_scripts/run_gnn.py  --config InverseProblem/config/init_state_gnn_np.ini 

You may also run the notebooks for a quick demo and visualization.

File Description
notebook/inverse_wave_equation_density.ipynb Full Waveform Inversion
notebook/inverse_wave_equation_init.ipynb Initial State Recovery

Training

We also provide sample training script for both GNN and prior network. Training dataset for both can be downloaded from here and unzip the data.zip folder in the root directory.

# train GNN forward model
python GNN/train_2d_wave_equation.py --file ./data/training  --diffML --normalize --log --lr_schedule
# train generative prior
python Prior/autodecoder.py  --num_pe_fns 3 --use_pe --dataset_size 10000 --batch_size 32 --gpu 1  --regularize --irregular_mesh --jitter --prior init_state
python Prior/autodecoder.py  --num_pe_fns 3 --use_pe --dataset_size 10000 --batch_size 32 --gpu 1  --regularize --irregular_mesh --jitter --prior density

Citation

@inproceedings{qzhao2022graphpde,
    title={Learning to Solve PDE-constrained Inverse Problems with Graph Networks},
    author={Qingqing Zhao and David B. Lindell and Gordon Wetzstein}
    journal={ICML},
    year={2022}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published