-
Notifications
You must be signed in to change notification settings - Fork 46
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add sam export scripts for bioengine format (#803)
- Loading branch information
Showing
2 changed files
with
253 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from micro_sam.bioimageio.bioengine_export import export_bioengine_model | ||
|
||
export_bioengine_model("vit_b", "test-export", opset=12) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,250 @@ | ||
import os | ||
import warnings | ||
from typing import Optional, Union | ||
|
||
import torch | ||
from segment_anything.utils.onnx import SamOnnxModel | ||
|
||
try: | ||
import onnxruntime | ||
onnxruntime_exists = True | ||
except ImportError: | ||
onnxruntime_exists = False | ||
|
||
from ..util import get_sam_model | ||
|
||
|
||
ENCODER_CONFIG = """name: "%s" | ||
backend: "pytorch" | ||
platform: "pytorch_libtorch" | ||
max_batch_size : 1 | ||
input [ | ||
{ | ||
name: "input0__0" | ||
data_type: TYPE_FP32 | ||
dims: [3, -1, -1] | ||
} | ||
] | ||
output [ | ||
{ | ||
name: "output0__0" | ||
data_type: TYPE_FP32 | ||
dims: [256, 64, 64] | ||
} | ||
] | ||
parameters: { | ||
key: "INFERENCE_MODE" | ||
value: { | ||
string_value: "true" | ||
} | ||
}""" | ||
|
||
|
||
DECODER_CONFIG = """name: "%s" | ||
backend: "onnxruntime" | ||
platform: "onnxruntime_onnx" | ||
parameters: { | ||
key: "INFERENCE_MODE" | ||
value: { | ||
string_value: "true" | ||
} | ||
} | ||
instance_group { | ||
count: 1 | ||
kind: KIND_CPU | ||
}""" | ||
|
||
|
||
def _to_numpy(tensor): | ||
return tensor.cpu().numpy() | ||
|
||
|
||
def export_image_encoder( | ||
model_type: str, | ||
output_root: Union[str, os.PathLike], | ||
export_name: Optional[str] = None, | ||
checkpoint_path: Optional[str] = None, | ||
) -> None: | ||
"""Export SAM image encoder to torchscript. | ||
The torchscript image encoder can be used for predicting image embeddings | ||
with a backed, e.g. with [the bioengine](https://github.com/bioimage-io/bioengine-model-runner). | ||
Args: | ||
model_type: The SAM model type. | ||
output_root: The output root directory where the exported model is saved. | ||
export_name: The name of the exported model. | ||
checkpoint_path: Optional checkpoint for loading the exported model. | ||
""" | ||
if export_name is None: | ||
export_name = model_type | ||
name = f"sam-{export_name}-encoder" | ||
|
||
output_folder = os.path.join(output_root, name) | ||
weight_output_folder = os.path.join(output_folder, "1") | ||
os.makedirs(weight_output_folder, exist_ok=True) | ||
|
||
predictor = get_sam_model(model_type=model_type, checkpoint_path=checkpoint_path) | ||
encoder = predictor.model.image_encoder | ||
|
||
encoder.eval() | ||
input_ = torch.rand(1, 3, 1024, 1024) | ||
traced_model = torch.jit.trace(encoder, input_) | ||
weight_path = os.path.join(weight_output_folder, "model.pt") | ||
traced_model.save(weight_path) | ||
|
||
config_output_path = os.path.join(output_folder, "config.pbtxt") | ||
with open(config_output_path, "w") as f: | ||
f.write(ENCODER_CONFIG % name) | ||
|
||
|
||
def export_onnx_model( | ||
model_type, | ||
output_root, | ||
opset: int, | ||
export_name: Optional[str] = None, | ||
checkpoint_path: Optional[Union[str, os.PathLike]] = None, | ||
return_single_mask: bool = True, | ||
gelu_approximate: bool = False, | ||
use_stability_score: bool = False, | ||
return_extra_metrics: bool = False, | ||
) -> None: | ||
"""Export SAM prompt encoder and mask decoder to onnx. | ||
The onnx encoder and decoder can be used for interactive segmentation in the browser. | ||
This code is adapted from | ||
https://github.com/facebookresearch/segment-anything/blob/main/scripts/export_onnx_model.py | ||
Args: | ||
model_type: The SAM model type. | ||
output_root: The output root directory where the exported model is saved. | ||
opset: The ONNX opset version. | ||
export_name: The name of the exported model. | ||
checkpoint_path: Optional checkpoint for loading the SAM model. | ||
return_single_mask: Whether the mask decoder returns a single or multiple masks. | ||
gelu_approximate: Whether to use a GeLU approximation, in case the ONNX backend | ||
does not have an efficient GeLU implementation. | ||
use_stability_score: Whether to use the stability score instead of the predicted score. | ||
return_extra_metrics: Whether to return a larger set of metrics. | ||
""" | ||
if export_name is None: | ||
export_name = model_type | ||
name = f"sam-{export_name}-decoder" | ||
|
||
output_folder = os.path.join(output_root, name) | ||
weight_output_folder = os.path.join(output_folder, "1") | ||
os.makedirs(weight_output_folder, exist_ok=True) | ||
|
||
_, sam = get_sam_model(model_type=model_type, checkpoint_path=checkpoint_path, return_sam=True) | ||
weight_path = os.path.join(weight_output_folder, "model.onnx") | ||
|
||
onnx_model = SamOnnxModel( | ||
model=sam, | ||
return_single_mask=return_single_mask, | ||
use_stability_score=use_stability_score, | ||
return_extra_metrics=return_extra_metrics, | ||
) | ||
|
||
if gelu_approximate: | ||
for n, m in onnx_model.named_modules: | ||
if isinstance(m, torch.nn.GELU): | ||
m.approximate = "tanh" | ||
|
||
dynamic_axes = { | ||
"point_coords": {1: "num_points"}, | ||
"point_labels": {1: "num_points"}, | ||
} | ||
|
||
embed_dim = sam.prompt_encoder.embed_dim | ||
embed_size = sam.prompt_encoder.image_embedding_size | ||
|
||
mask_input_size = [4 * x for x in embed_size] | ||
dummy_inputs = { | ||
"image_embeddings": torch.randn(1, embed_dim, *embed_size, dtype=torch.float), | ||
"point_coords": torch.randint(low=0, high=1024, size=(1, 5, 2), dtype=torch.float), | ||
"point_labels": torch.randint(low=0, high=4, size=(1, 5), dtype=torch.float), | ||
"mask_input": torch.randn(1, 1, *mask_input_size, dtype=torch.float), | ||
"has_mask_input": torch.tensor([1], dtype=torch.float), | ||
"orig_im_size": torch.tensor([1500, 2250], dtype=torch.float), | ||
} | ||
|
||
_ = onnx_model(**dummy_inputs) | ||
|
||
output_names = ["masks", "iou_predictions", "low_res_masks"] | ||
|
||
with warnings.catch_warnings(): | ||
warnings.filterwarnings("ignore", category=torch.jit.TracerWarning) | ||
warnings.filterwarnings("ignore", category=UserWarning) | ||
with open(weight_path, "wb") as f: | ||
print(f"Exporting onnx model to {weight_path}...") | ||
torch.onnx.export( | ||
onnx_model, | ||
tuple(dummy_inputs.values()), | ||
f, | ||
export_params=True, | ||
verbose=False, | ||
opset_version=opset, | ||
do_constant_folding=True, | ||
input_names=list(dummy_inputs.keys()), | ||
output_names=output_names, | ||
dynamic_axes=dynamic_axes, | ||
) | ||
|
||
if onnxruntime_exists: | ||
ort_inputs = {k: _to_numpy(v) for k, v in dummy_inputs.items()} | ||
# set cpu provider default | ||
providers = ["CPUExecutionProvider"] | ||
ort_session = onnxruntime.InferenceSession(weight_path, providers=providers) | ||
_ = ort_session.run(None, ort_inputs) | ||
print("Model has successfully been run with ONNXRuntime.") | ||
|
||
config_output_path = os.path.join(output_folder, "config.pbtxt") | ||
with open(config_output_path, "w") as f: | ||
f.write(DECODER_CONFIG % name) | ||
|
||
|
||
def export_bioengine_model( | ||
model_type, | ||
output_root, | ||
opset: int, | ||
export_name: Optional[str] = None, | ||
checkpoint_path: Optional[Union[str, os.PathLike]] = None, | ||
return_single_mask: bool = True, | ||
gelu_approximate: bool = False, | ||
use_stability_score: bool = False, | ||
return_extra_metrics: bool = False, | ||
) -> None: | ||
"""Export SAM model to a format compatible with the BioEngine. | ||
[The bioengine](https://github.com/bioimage-io/bioengine-model-runner) enables running the | ||
image encoder on an online backend, so that SAM can be used in an online tool, or to predict | ||
the image embeddings via the online backend rather than on CPU. | ||
Args: | ||
model_type: The SAM model type. | ||
output_root: The output root directory where the exported model is saved. | ||
opset: The ONNX opset version. | ||
export_name: The name of the exported model. | ||
checkpoint_path: Optional checkpoint for loading the SAM model. | ||
return_single_mask: Whether the mask decoder returns a single or multiple masks. | ||
gelu_approximate: Whether to use a GeLU approximation, in case the ONNX backend | ||
does not have an efficient GeLU implementation. | ||
use_stability_score: Whether to use the stability score instead of the predicted score. | ||
return_extra_metrics: Whether to return a larger set of metrics. | ||
""" | ||
export_image_encoder(model_type, output_root, export_name, checkpoint_path) | ||
export_onnx_model( | ||
model_type=model_type, | ||
output_root=output_root, | ||
opset=opset, | ||
export_name=export_name, | ||
checkpoint_path=checkpoint_path, | ||
return_single_mask=return_single_mask, | ||
gelu_approximate=gelu_approximate, | ||
use_stability_score=use_stability_score, | ||
return_extra_metrics=return_extra_metrics, | ||
) |