Skip to content

cog-imperial/concrete_GBT_instance_for_mixed_integer_convex_optimization_with_GBTs_embedded

Repository files navigation

Gradient-Boosted Trees Model used for Concrete Mixture Design Instance in ArXiv:1803.00952

DOI

Miten Mistry, Dimitrios Letsios, Gerhard Krennrich, Robert M. Lee and Ruth Misener
Imperial College London, UK
BASF SE, Germany

Overview

This repository contains the concrete mixture design gradient-boosted tree instance used in the numerical tests of:

Files

  • trained_instance.RData: the trained instance using the parameters listed under Training Description below
  • trained_instance.tree: the trained instance printed using pretty.gbm.tree.
  • labels.dat: labels for variables
  • lower.dat: vector of lower bounds
  • means.dat: mean vector
  • pca_load.dat: PCA loading vectors
  • stddev.dat: vector of standard deviations
  • upper.dat: vector of upper bounds

Training Description

  • Data source: concrete compressive strength data set on UCI machine learning repository (Yeh, 1998; Dheeru and Karra Taniskidou, 2017).
  • Gradient-boosted tree instance trained using:
    • R version 3.4.0
    • gbm version 2.1.3
    • caret version 6.0
    • caret trainControl parameters:
      • method: cv
      • number: 6
    • caret tuneGrid parameters:
      • n.trees: seq(1000, 8000, 100)
      • interaction.depth: c(2,4,6,8)
      • shrinkage: c(0.1, 0.05, 0.01)
      • n.minobsinnode: c(10)
    • caret metric parameter: RMSE
    • caret distribution: gaussian

References

  • Dheeru D, Karra Taniskidou E. 2017. UCI machine learning repository. URL: http://archive.ics.uci.edu/ml/index.php.
  • Yeh IC. 1998. Modeling of strength of high-performance concrete using artificial neural networks. Cement Concrete Research. 28(12):1797--1808.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published