This repository contains the concrete mixture design gradient-boosted tree instance used in the numerical tests of:
trained_instance.RData
: the trained instance using the parameters listed under Training Description belowtrained_instance.tree
: the trained instance printed usingpretty.gbm.tree
.labels.dat
: labels for variableslower.dat
: vector of lower boundsmeans.dat
: mean vectorpca_load.dat
: PCA loading vectorsstddev.dat
: vector of standard deviationsupper.dat
: vector of upper bounds
- Data source: concrete compressive strength data set on UCI machine learning repository (Yeh, 1998; Dheeru and Karra Taniskidou, 2017).
- Gradient-boosted tree instance trained using:
- R version 3.4.0
- gbm version 2.1.3
- caret version 6.0
- caret trainControl parameters:
- method: cv
- number: 6
- caret tuneGrid parameters:
- n.trees:
seq(1000, 8000, 100)
- interaction.depth:
c(2,4,6,8)
- shrinkage:
c(0.1, 0.05, 0.01)
- n.minobsinnode:
c(10)
- n.trees:
- caret metric parameter: RMSE
- caret distribution: gaussian
- Dheeru D, Karra Taniskidou E. 2017. UCI machine learning repository. URL: http://archive.ics.uci.edu/ml/index.php.
- Yeh IC. 1998. Modeling of strength of high-performance concrete using artificial neural networks. Cement Concrete Research. 28(12):1797--1808.