-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexample_rrt_2.m
112 lines (82 loc) · 2.6 KB
/
example_rrt_2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
% rrtv7
% script to test and run the RRT path finder for random starting and goal
% point
clear
hold off
addpath('digraph')
addpath('World')
addpath('UAV')
addpath('RRT')
% amount of Agents
N_Agents = 1;
% Starting position, attitude and initial velocity
Path.Start.state(:,1) = UAV.getNewRandomState();
Path.Start.state(4,1) = 1/25; % Initial velocity, since we are doing
% steering only control in this example,
% this becomes the step size.
% Goal and goal size.
Path.Goal.state(:,1) = UAV.getNewRandomState();
Path.Goal.Radius(1) = 0.125;
% our world is a square [0; 1]x[0; 1], the following image represents
% this square, ObstacleMap is a matrix of the same size as the image.
w = World('shape4.png');
w.ShowObstacleMap(w);
% plot starting positions and goal
for k = 1:N_Agents
hold on
PlotCircle(Path.Start.state(1:2,k), Path.Goal.Radius(k)/8, 3, 'Green');
PlotPoint(Path.Start.state(1:2,k), '*g');
PlotCircle(Path.Goal.state(1:2,k), Path.Goal.Radius(k), 3, 'Red');
PlotPoint(Path.Goal.state(1:2,k), '*r');
end
% Initialize states, RRT and world.
for k = 1:N_Agents
% Initialize the Agent with the initial state vector of the k-th Agent
r(k) = UAV();
r(k).Init(Path.Start.state(:,k));
g(k) = RRT(r(k),...
w);
% Add the starting vertex to the RRT graph
g(k).AddVertexFromState(Path.Start.state(:,k));
end
hold on
% Max number of iterations
N_max_iterations = 400;
% initialize distance logging into d, d(k, i) is the k-th agent distance to
% the goal on the i-th iteration
d = zeros(N_Agents, N_max_iterations);
% Initialize variables for the while loop
i = 1;
for k = 1:N_Agents
d(k, i) = g(k).getDistanceToState(Path.Goal.state(:,k));
end
Path.Goal.Reached = false;
while (i < N_max_iterations) && ~Path.Goal.Reached
for k = 1:N_Agents
g(k).Grow();
d(k, i) = g(k).getDistanceToState(Path.Goal.state(:,k));
end
drawnow update
Path.Goal.Reached = logical(sum(d(k, i) < Path.Goal.Radius(1:N_Agents)) >= N_Agents);
i = i+1;
end
% trim distance log
d = d(:, 1:i-1);
%%
% actually find the path!
for k = 1:N_Agents
[Path.States, Path.Controls] = g(k).FindPathBetweenStates(Path.Start.state(:,k),...
Path.Goal.state(:,k));
% Plot it!
PlotPath(Path.States, Path.Controls);
end
%%
% plot convergence plot
figure('Name', 'Convergence Plot')
title('Convergence Plot')
hold on
xlabel('Iterations [n]');
ylabel('Distance [normalized]');
for k = 1:N_Agents
plot(d(k,:))
end