These are based on Ubuntu 16.0.4.1 LTS
build-essential
cmake
pkg-config
libjpeg8-dev
libtiff5-dev
libjasper-dev
libpng12-dev
libavcodec-dev
libavformat-dev
libswscale-dev
libv4l-dev
libxvidcore-dev
libx264-dev
libgtk-3-dev
libatlas-base-dev
gfortran
ffmpeg
python2.7-dev
Or
python3.5-dev
numpy
imutils
OpenCV 3.3.0
usage: rp85.py [-h] [-z BLUR] [-Z BLURMEDIAN] [-x BLURGAUSSIAN] [-y WARPING]
[-Y FILL] [-D DRAW] [-E ENCRYPT] [-b BLURLEVEL]
[-B BLURPADDING] [-c CODEC] [-C CONFIDENCE] [-d DETECTION]
[-i FEEDIP] [-e FEEDUSB] [-f FRAMES] [-I INSTALL] [-l LABELS]
[-L LOGGING] [-m MODEL] [-o ORIGINAL] [-O OUTPUT] [-R RESTREAM]
[-p PROTOTXT] [-s SHOWLOCAL] [-t TIMER]
optional arguments:
-h, --help show this help message and exit
-z BLUR, --blur BLUR Set to yes to apply blurring to the detections
-Z BLURMEDIAN, --blurmedian BLURMEDIAN
Set to yes to apply median blurring to the detections
-x BLURGAUSSIAN, --blurgaussian BLURGAUSSIAN
Set to yes to apply gaussian blurring to the
detections
-y WARPING, --warping WARPING
Set to yes to apply warping to the detections
-Y FILL, --fill FILL Set to yes to apply filling to the detections
-D DRAW, --draw DRAW Set to yes to draw a rectangle on the detections
-E ENCRYPT, --encrypt ENCRYPT
Set to yes to apply AES encryption to the original
stream
-b BLURLEVEL, --blurlevel BLURLEVEL
Set the blur intensity (size of pixel square
-B BLURPADDING, --blurpadding BLURPADDING
Set the blur padding applied to the frames
-c CODEC, --codec CODEC
Set the type of codec of output video
-C CONFIDENCE, --confidence CONFIDENCE
Confidence level, to filter out weak/incorrect
detections
-d DETECTION, --detection DETECTION
Set to yes to turn on detections using DNN
-i FEEDIP, --feedip FEEDIP
Set the URL to the camera
-e FEEDUSB, --feedusb FEEDUSB
Set the USB feed to be used (USB socket number as X,
aka /dev/videoX)
-f FRAMES, --frames FRAMES
Set the FPS rate for the video output file
-I INSTALL, --install INSTALL
Install opencv on the specified platform: ubuntu-16.04
(Note: this does not work)
-l LABELS, --labels LABELS
Set to 'yes' to label the detections
-L LOGGING, --logging LOGGING
Specify the optional logfile
-m MODEL, --model MODEL
path to Caffe pre-trained DNN model
-o ORIGINAL, --original ORIGINAL
path to output unaltered video file
-O OUTPUT, --output OUTPUT
path to output video file
-R RESTREAM, --restream RESTREAM
restream the edited feed
-p PROTOTXT, --prototxt PROTOTXT
path to Caffe 'deploy' prototxt file
-s SHOWLOCAL, --showlocal SHOWLOCAL
Show the video stream on the local machine
-t TIMER, --timer TIMER
Set the time the script runs
python rp85.py --model Caffenet.Model --prototxt Caffenet.Proto --feedusb 0 --detection yes --confidence 0.2 --draw yes --labels yes --blur yes --blurlevel 50 --blurpadding 25