Skip to content

Commit

Permalink
synthia 3d weights
Browse files Browse the repository at this point in the history
  • Loading branch information
chrischoy committed Jan 30, 2020
1 parent 1c937e8 commit f526c2a
Show file tree
Hide file tree
Showing 3 changed files with 20 additions and 6 deletions.
14 changes: 8 additions & 6 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -133,12 +133,14 @@ python -m lib.datasets.preprocessing.stanford

## Model Zoo

| Model | Dataset | Voxel Size | Conv1 Kernel Size | Performance | Link |
|:-------------:|:-------------------:|:----------:|:-----------------:|:-------------------------------------------------------------------------------:|:------:|
| Mink16UNet34C | ScanNet train + val | 2cm | 3 | Test set 73.6% mIoU, no sliding window | [download](https://node1.chrischoy.org/data/publications/minknet/Mink16UNet34C_ScanNet.pth) |
| Mink16UNet34C | ScanNet train | 2cm | 5 | Val 72.219% mIoU, no rotation average, no sliding window [per class performance](https://github.com/chrischoy/SpatioTemporalSegmentation/issues/13) | [download](https://node1.chrischoy.org/data/publications/minknet/MinkUNet34C-train-conv1-5.pth) |
| Mink16UNet18 | Stanford Area5 train | 5cm | 5 | Area 5 test 65.828% mIoU, no rotation average, no sliding window [per class performance](https://pastebin.com/Gj3PrPFr) | [download](https://node1.chrischoy.org/data/publications/minknet/Mink16UNet18-stanford-conv1-5.pth) |
| Mink16UNet34 | Stanford Area5 train | 5cm | 5 | Area 5 test 66.348% mIoU, no rotation average, no sliding window [per class performance](https://pastebin.com/WzhfGMQG) | [download](https://node1.chrischoy.org/data/publications/minknet/Mink16UNet34-stanford-conv1-5.pth) |
| Model | Dataset | Voxel Size | Conv1 Kernel Size | Performance | Link |
|:----------------:|:-------------------:|:----------:|:-----------------:|:-------------------------------------------------------------------------------:|:------:|
| Mink16UNet34C | ScanNet train + val | 2cm | 3 | Test set 73.6% mIoU, no sliding window | [download](https://node1.chrischoy.org/data/publications/minknet/Mink16UNet34C_ScanNet.pth) |
| Mink16UNet34C | ScanNet train | 2cm | 5 | Val 72.219% mIoU, no rotation average, no sliding window [per class performance](https://github.com/chrischoy/SpatioTemporalSegmentation/issues/13) | [download](https://node1.chrischoy.org/data/publications/minknet/MinkUNet34C-train-conv1-5.pth) |
| Mink16UNet18 | Stanford Area5 train | 5cm | 5 | Area 5 test 65.828% mIoU, no rotation average, no sliding window [per class performance](https://pastebin.com/Gj3PrPFr) | [download](https://node1.chrischoy.org/data/publications/minknet/Mink16UNet18-stanford-conv1-5.pth) |
| Mink16UNet34 | Stanford Area5 train | 5cm | 5 | Area 5 test 66.348% mIoU, no rotation average, no sliding window [per class performance](https://pastebin.com/WzhfGMQG) | [download](https://node1.chrischoy.org/data/publications/minknet/Mink16UNet34-stanford-conv1-5.pth) |
| 3D Mink16UNet14A | Synthia CVPR19 train | 15cm | 3 | CVPR19 test wo elastic distortion 81.903% mIoU, no rotation average, no sliding window [per class performance](https://pastebin.com/hN88iQqa) | [download](https://node1.chrischoy.org/data/publications/minknet/Mink16UNet14A-synthia-conv1-3.pth) |


Note that sliding window style evaluation (cropping and stitching results) used in many related works effectively works as an ensemble (rotation averaging) which boosts the performance.

Expand Down
4 changes: 4 additions & 0 deletions lib/datasets/synthia.py
Original file line number Diff line number Diff line change
Expand Up @@ -265,6 +265,10 @@ def _transform(xyz, intrinsic, extrinsic):
return ptc, center


class SynthiaCVPR10cmVoxelizationDataset(SynthiaVoxelizationDataset):
VOXEL_SIZE = 10


class SynthiaCVPR15cmVoxelizationDataset(SynthiaVoxelizationDataset):
pass

Expand Down
8 changes: 8 additions & 0 deletions scripts/train_synthia4d.sh
Original file line number Diff line number Diff line change
Expand Up @@ -33,3 +33,11 @@ python -m main \
--train_limit_numpoints 1200000 \
--train_phase train \
$3 2>&1 | tee -a "$LOG"

python -m main \
--log_dir $LOG_DIR \
--dataset $DATASET \
--model $MODEL \
--is_train False \
--weights $LOG_DIR/weights.pth \
$3 2>&1 | tee -a "$LOG"

0 comments on commit f526c2a

Please sign in to comment.