- download following models (cnn_face_detector, landmark_v1, landmark_v2)
- convert to .dat format
bzip2 -d FileName.bz2
- Dlib mmod cnn based face detector cnn_face_detector
- note: This model is slow using CPU but mobile gpu like NVIDIA GeForce MX250 run smooth enough in webcam
- The well trained dlib landmark 68 model cam be downloaded from landamrk_v1
- regression tree
- Robust landmark model use cnn based face detector for large head pose variation: landmark_v2
- regression tree
- compare hog+svm(blue) and cnn(green)
python viaualize_fd.py
- compare hog+landmark_v1(blue) and cnn+landmark_v2(green)
python visualize_lm.py
- visualize Canonical Face Mdoel in World Coord.
python visualize_face_in_world.py
- 58 pts only
- visualize headpose estimation in pixel coord.
python visualize_hp.py
- pitch bug
- dlib_frontal_face_detection(HOG) + dlib_landmark(landmark_v1)
- dlib_cnn_face_detection(CNN) + dlib_landmark(landmark_v2)
- visualize canonical face model in world coordinate system
- head pose estimation with solvePnP
- axis visualization
- cube visualization
- visualize canonical face model in camera coordinate system
- camera intrinsic calibration
- dlib-project
- dlib-models
- landmark_v1: shape_predictor_68_face_landmarks.dat.bz2
- landmark_v2: shape_predictor_68_face_landmarks_GTX.dat.bz2
- cnn_face_detector: mmod_human_face_detector.dat.bz2
- head-pose-estimation
- python dlib get headpose example
- dlib_cnn_face_detector
- paper: Max-Margin Object Detection(mmod)
- dlib_landmark_v1
- paper: One Millisecond Face Alignment with an Ensemble of Regression Trees
- dlib hog face detector only
- dlib_landmark_v2
- paper: Real-time face alignment: evaluation methods, training strategies and implementation optimization
- dlib CNN/hog face detector