Skip to content

Commit

Permalink
Add SimplifyAST option to match 'gofmt -s'
Browse files Browse the repository at this point in the history
  • Loading branch information
Charlie Vieth committed Mar 3, 2019
1 parent a04ac62 commit ae75193
Show file tree
Hide file tree
Showing 2 changed files with 275 additions and 1 deletion.
6 changes: 5 additions & 1 deletion imports.go
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,8 @@ type Options struct {
TabIndent bool // Use tabs for indent (true if nil *Options provided)
TabWidth int // Tab width (8 if nil *Options provided)

FormatOnly bool // Disable the insertion and deletion of imports
FormatOnly bool // Disable the insertion and deletion of imports
SimplifyAST bool // simplify code
}

// Process formats and adjusts imports for the provided file.
Expand Down Expand Up @@ -93,6 +94,9 @@ func process(filename string, src []byte, opt *Options, env *fixEnv) ([]byte, er
}

}
if opt.SimplifyAST {
simplify(file)
}

printerMode := printer.UseSpaces
if opt.TabIndent {
Expand Down
270 changes: 270 additions & 0 deletions simplify.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,270 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package imports

import (
"go/ast"
"go/token"
"reflect"
"unicode"
"unicode/utf8"
)

type simplifier struct{}

func (s simplifier) Visit(node ast.Node) ast.Visitor {
switch n := node.(type) {
case *ast.CompositeLit:
// array, slice, and map composite literals may be simplified
outer := n
var keyType, eltType ast.Expr
switch typ := outer.Type.(type) {
case *ast.ArrayType:
eltType = typ.Elt
case *ast.MapType:
keyType = typ.Key
eltType = typ.Value
}

if eltType != nil {
var ktyp reflect.Value
if keyType != nil {
ktyp = reflect.ValueOf(keyType)
}
typ := reflect.ValueOf(eltType)
for i, x := range outer.Elts {
px := &outer.Elts[i]
// look at value of indexed/named elements
if t, ok := x.(*ast.KeyValueExpr); ok {
if keyType != nil {
s.simplifyLiteral(ktyp, keyType, t.Key, &t.Key)
}
x = t.Value
px = &t.Value
}
s.simplifyLiteral(typ, eltType, x, px)
}
// node was simplified - stop walk (there are no subnodes to simplify)
return nil
}

case *ast.SliceExpr:
// a slice expression of the form: s[a:len(s)]
// can be simplified to: s[a:]
// if s is "simple enough" (for now we only accept identifiers)
//
// Note: This may not be correct because len may have been redeclared in another
// file belonging to the same package. However, this is extremely unlikely
// and so far (April 2016, after years of supporting this rewrite feature)
// has never come up, so let's keep it working as is (see also #15153).
if n.Max != nil {
// - 3-index slices always require the 2nd and 3rd index
break
}
if s, _ := n.X.(*ast.Ident); s != nil && s.Obj != nil {
// the array/slice object is a single, resolved identifier
if call, _ := n.High.(*ast.CallExpr); call != nil && len(call.Args) == 1 && !call.Ellipsis.IsValid() {
// the high expression is a function call with a single argument
if fun, _ := call.Fun.(*ast.Ident); fun != nil && fun.Name == "len" && fun.Obj == nil {
// the function called is "len" and it is not locally defined; and
// because we don't have dot imports, it must be the predefined len()
if arg, _ := call.Args[0].(*ast.Ident); arg != nil && arg.Obj == s.Obj {
// the len argument is the array/slice object
n.High = nil
}
}
}
}
// Note: We could also simplify slice expressions of the form s[0:b] to s[:b]
// but we leave them as is since sometimes we want to be very explicit
// about the lower bound.
// An example where the 0 helps:
// x, y, z := b[0:2], b[2:4], b[4:6]
// An example where it does not:
// x, y := b[:n], b[n:]

case *ast.RangeStmt:
// - a range of the form: for x, _ = range v {...}
// can be simplified to: for x = range v {...}
// - a range of the form: for _ = range v {...}
// can be simplified to: for range v {...}
if isBlank(n.Value) {
n.Value = nil
}
if isBlank(n.Key) && n.Value == nil {
n.Key = nil
}
}

return s
}

func (s simplifier) simplifyLiteral(typ reflect.Value, astType, x ast.Expr, px *ast.Expr) {
ast.Walk(s, x) // simplify x

// if the element is a composite literal and its literal type
// matches the outer literal's element type exactly, the inner
// literal type may be omitted
if inner, ok := x.(*ast.CompositeLit); ok {
if match(nil, typ, reflect.ValueOf(inner.Type)) {
inner.Type = nil
}
}
// if the outer literal's element type is a pointer type *T
// and the element is & of a composite literal of type T,
// the inner &T may be omitted.
if ptr, ok := astType.(*ast.StarExpr); ok {
if addr, ok := x.(*ast.UnaryExpr); ok && addr.Op == token.AND {
if inner, ok := addr.X.(*ast.CompositeLit); ok {
if match(nil, reflect.ValueOf(ptr.X), reflect.ValueOf(inner.Type)) {
inner.Type = nil // drop T
*px = inner // drop &
}
}
}
}
}

func isBlank(x ast.Expr) bool {
ident, ok := x.(*ast.Ident)
return ok && ident.Name == "_"
}

func simplify(f *ast.File) {
// remove empty declarations such as "const ()", etc
removeEmptyDeclGroups(f)

var s simplifier
ast.Walk(s, f)
}

func removeEmptyDeclGroups(f *ast.File) {
i := 0
for _, d := range f.Decls {
if g, ok := d.(*ast.GenDecl); !ok || !isEmpty(f, g) {
f.Decls[i] = d
i++
}
}
f.Decls = f.Decls[:i]
}

func isEmpty(f *ast.File, g *ast.GenDecl) bool {
if g.Doc != nil || g.Specs != nil {
return false
}

for _, c := range f.Comments {
// if there is a comment in the declaration, it is not considered empty
if g.Pos() <= c.Pos() && c.End() <= g.End() {
return false
}
}

return true
}

// -----------------------------------------------------------------------------
// rewrite.go logic

// Values/types for special cases.
var (
identType = reflect.TypeOf((*ast.Ident)(nil))
objectPtrType = reflect.TypeOf((*ast.Object)(nil))
positionType = reflect.TypeOf(token.NoPos)
callExprType = reflect.TypeOf((*ast.CallExpr)(nil))
)

func isWildcard(s string) bool {
rune, size := utf8.DecodeRuneInString(s)
return size == len(s) && unicode.IsLower(rune)
}

// match reports whether pattern matches val,
// recording wildcard submatches in m.
// If m == nil, match checks whether pattern == val.
func match(m map[string]reflect.Value, pattern, val reflect.Value) bool {
// Wildcard matches any expression. If it appears multiple
// times in the pattern, it must match the same expression
// each time.
if m != nil && pattern.IsValid() && pattern.Type() == identType {
name := pattern.Interface().(*ast.Ident).Name
if isWildcard(name) && val.IsValid() {
// wildcards only match valid (non-nil) expressions.
if _, ok := val.Interface().(ast.Expr); ok && !val.IsNil() {
if old, ok := m[name]; ok {
return match(nil, old, val)
}
m[name] = val
return true
}
}
}

// Otherwise, pattern and val must match recursively.
if !pattern.IsValid() || !val.IsValid() {
return !pattern.IsValid() && !val.IsValid()
}
if pattern.Type() != val.Type() {
return false
}

// Special cases.
switch pattern.Type() {
case identType:
// For identifiers, only the names need to match
// (and none of the other *ast.Object information).
// This is a common case, handle it all here instead
// of recursing down any further via reflection.
p := pattern.Interface().(*ast.Ident)
v := val.Interface().(*ast.Ident)
return p == nil && v == nil || p != nil && v != nil && p.Name == v.Name
case objectPtrType, positionType:
// object pointers and token positions always match
return true
case callExprType:
// For calls, the Ellipsis fields (token.Position) must
// match since that is how f(x) and f(x...) are different.
// Check them here but fall through for the remaining fields.
p := pattern.Interface().(*ast.CallExpr)
v := val.Interface().(*ast.CallExpr)
if p.Ellipsis.IsValid() != v.Ellipsis.IsValid() {
return false
}
}

p := reflect.Indirect(pattern)
v := reflect.Indirect(val)
if !p.IsValid() || !v.IsValid() {
return !p.IsValid() && !v.IsValid()
}

switch p.Kind() {
case reflect.Slice:
if p.Len() != v.Len() {
return false
}
for i := 0; i < p.Len(); i++ {
if !match(m, p.Index(i), v.Index(i)) {
return false
}
}
return true

case reflect.Struct:
for i := 0; i < p.NumField(); i++ {
if !match(m, p.Field(i), v.Field(i)) {
return false
}
}
return true

case reflect.Interface:
return match(m, p.Elem(), v.Elem())
}

// Handle token integers, etc.
return p.Interface() == v.Interface()
}

0 comments on commit ae75193

Please sign in to comment.