Skip to content

carnegiemellonracing/lidar_camera_calibration

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repository implements LiDAR to camera calibration via Direct Linear Transform

btw this is not renering properly on GitHub (if you want to see the equations open in vscode)

The Repo

  • main.py is where the test is run
  • dlt.py has the direct linear transform function that takes in LiDAR and camera points and returns the projection matrix
  • camera_fusion/ houses the module that calibrates cameras for barrel distortion using Zhang's method and fuses two camera frames together via homography
  • scripts/ has scripts for labeling camera and LiDAR data. Follow comments in the script to use. Note: currently the LiDAR labeling is unimplemented
  • dm Arya Lohia on slack if you want the data

The Math

$$\text{The goal is to solve the equation } \vec{x} = \text{P}\mathbf{X} \text{ for P}$$ $$\vec{x} \text{ is the camera pixel coordinate (homogeneous coordinates)} \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} \\ \mathbf{X} \text{ is a point in LIDAR space (homogeneous coordinates)} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \\\ \text{P is the projection matrix, P: } \R^{4} \rightarrow \R^{3} \text{, P} = \textbf{K}R[I_3 | - X_0] \\\ \textbf{K} \text{ is the intrinsic camera parameter matrix} \\\ R \text{ is the rotation matrix} \\\ X_0 \text{ is the location of the camera in LiDAR space}$$

Important

This requires at least 6 points in space that are identified in the camera frame and the lidar. These points must not be coplanar (would result in a reduction of rank of the final matrix making solving for the parameters impossible).

$$\begin{align*} \vec{x_i} &= \text{P}\mathbf{X_i} \\\ \vec{x_i} &= \begin{bmatrix} - A^T -\\ - B^T - \\ - C^T - \end{bmatrix}\mathbf{X_i} \\\ \begin{pmatrix} u_i \\ v_i \\ w_i \end{pmatrix}&= \begin{bmatrix} A^T\mathbf{X_i}\\ B^T\mathbf{X_i} \\ C^T\mathbf{X_i} \end{bmatrix} \\ \text{divide by w to normalize into 2d pixel} \begin{pmatrix} \frac{u_i}{w_i} \\ \frac{v_i}{w_i} \\ 1 \end{pmatrix} &= \begin{bmatrix} \frac{A^T\mathbf{X_i}}{C^T\mathbf{X_i}} \\ \frac{B^T\mathbf{X_i}}{C^T\mathbf{X_i}} \\ 1 \end{bmatrix} \\ \text{now we have a system of two equations} \begin{pmatrix} x_i \\ y_i \\ 1 \end{pmatrix} &= \begin{bmatrix} \frac{A^T\mathbf{X_i}}{C^T\mathbf{X_i}} \\ \frac{B^T\mathbf{X_i}}{C^T\mathbf{X_i}} \\ 1 \end{bmatrix} \\\ \begin{align*} x_i &= \frac{A^T\mathbf{X_i}}{C^T\mathbf{X_i}} \\\ y_i &= \frac{B^T\mathbf{X_i}}{C^T\mathbf{X_i}} \end{align*} \\\ \begin{align*} x_i \cdot C^T\mathbf{X_i} - A^T\mathbf{X_i} &= 0\\\ y_i \cdot C^T\mathbf{X_i} - B^T\mathbf{X_i} &= 0 \end{align*} \\\ \begin{align*} - \mathbf{X_i}^TA \phantom{\mathbf{X_i}^TB} + x_i \cdot \mathbf{X_i}^TC &= 0\\\ \phantom{\mathbf{X_i}^TA} - \mathbf{X_i}^TB + y_i \cdot \mathbf{X_i}^TC &= 0 \end{align*} \\ \text{2 equations, 12 unknowns, } \begin{pmatrix} \mathbf{-X_i}^T & \vec{0} & x_i\mathbf{X_i}^T \\ \vec{0} & \mathbf{-X_i}^T & x_i\mathbf{X_i}^T \end{pmatrix} \begin{bmatrix} A^T \\ B^T \\ C^T\end{bmatrix} &= 0 \\\ \text{for each equation we have one camera pixel and one lidar point} \\ \text{In order to solve generally, we can stack more correspondance eqns.} \\\ \begin{pmatrix} \mathbf{-X_1}^T & \vec{0} & x_1\mathbf{X_1}^T \\ \vec{0} & \mathbf{-X_1}^T & x_1\mathbf{X_1}^T \\\ \dots & \dots & \dots \\\ \mathbf{-X_i}^T & \vec{0} & x_i\mathbf{X_i}^T \\ \vec{0} & \mathbf{-X_i}^T & x_i\mathbf{X_i}^T \\\ \dots & \dots & \dots \\\ \mathbf{-X_I}^T & \vec{0} & x_I\mathbf{X_I}^T \\ \vec{0} & \mathbf{-X_I}^T & x_I\mathbf{X_I}^T \\\ \end{pmatrix} \begin{bmatrix} A^T \\ B^T \\ C^T\end{bmatrix} &= 0 \\\ \mathbf{A}\vec{p} = \vec{0} \end{align*} \\\mathbf{A}\text{ is an (Ix12) matrix and } \vec{p} \text{ is a (12x1) vector. Solve using SVD}$$

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%