forked from Project-MONAI/MONAI
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
210 integration tests for workflows (Project-MONAI#211)
* initial integration tests * update * separate the slow test, update rtol * fixes styles * resume unet 2d test * fixes flake8 error * config coverage xml
- Loading branch information
Showing
7 changed files
with
376 additions
and
53 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
coverage: | ||
status: | ||
project: | ||
default: | ||
target: 70% | ||
threshold: 10 | ||
base: parent | ||
branches: null | ||
if_no_uploads: error | ||
if_not_found: success | ||
if_ci_failed: error | ||
only_pulls: false | ||
flags: null | ||
paths: null | ||
patch: | ||
default: | ||
target: auto | ||
# Allows PRs without tests, overall stats count | ||
threshold: 100 | ||
base: auto | ||
branches: null | ||
if_no_uploads: error | ||
if_not_found: success | ||
if_ci_failed: error | ||
only_pulls: false | ||
flags: null | ||
paths: null | ||
|
||
# Disable comments on PR | ||
comment: false |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,265 @@ | ||
# Copyright 2020 MONAI Consortium | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import shutil | ||
import tempfile | ||
import unittest | ||
from glob import glob | ||
|
||
import nibabel as nib | ||
import numpy as np | ||
import torch | ||
from torch.utils.data import DataLoader | ||
from torch.utils.tensorboard import SummaryWriter | ||
|
||
import monai | ||
import monai.transforms.compose as transforms | ||
from monai.data.nifti_saver import NiftiSaver | ||
from monai.data.synthetic import create_test_image_3d | ||
from monai.data.utils import list_data_collate | ||
from monai.metrics.compute_meandice import compute_meandice | ||
from monai.networks.nets.unet import UNet | ||
from monai.transforms.composables import (AsChannelFirstd, LoadNiftid, RandCropByPosNegLabeld, RandRotate90d, Rescaled) | ||
from monai.utils.sliding_window_inference import sliding_window_inference | ||
from monai.visualize.img2tensorboard import plot_2d_or_3d_image | ||
|
||
from tests.utils import skip_if_quick | ||
|
||
|
||
def run_training_test(root_dir, device=torch.device("cuda:0")): | ||
monai.config.print_config() | ||
images = sorted(glob(os.path.join(root_dir, 'img*.nii.gz'))) | ||
segs = sorted(glob(os.path.join(root_dir, 'seg*.nii.gz'))) | ||
train_files = [{'img': img, 'seg': seg} for img, seg in zip(images[:20], segs[:20])] | ||
val_files = [{'img': img, 'seg': seg} for img, seg in zip(images[-20:], segs[-20:])] | ||
|
||
# define transforms for image and segmentation | ||
train_transforms = transforms.Compose([ | ||
LoadNiftid(keys=['img', 'seg']), | ||
AsChannelFirstd(keys=['img', 'seg'], channel_dim=-1), | ||
Rescaled(keys=['img', 'seg']), | ||
RandCropByPosNegLabeld(keys=['img', 'seg'], label_key='seg', size=[96, 96, 96], pos=1, neg=1, num_samples=4), | ||
RandRotate90d(keys=['img', 'seg'], prob=0.8, spatial_axes=[0, 2]) | ||
]) | ||
train_transforms.set_random_state(1234) | ||
val_transforms = transforms.Compose([ | ||
LoadNiftid(keys=['img', 'seg']), | ||
AsChannelFirstd(keys=['img', 'seg'], channel_dim=-1), | ||
Rescaled(keys=['img', 'seg']) | ||
]) | ||
val_transforms.set_random_state(1234) | ||
|
||
# create a training data loader | ||
train_ds = monai.data.Dataset(data=train_files, transform=train_transforms) | ||
# use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training | ||
train_loader = DataLoader(train_ds, | ||
batch_size=2, | ||
shuffle=True, | ||
num_workers=4, | ||
collate_fn=list_data_collate, | ||
pin_memory=torch.cuda.is_available()) | ||
# create a validation data loader | ||
val_ds = monai.data.Dataset(data=val_files, transform=val_transforms) | ||
val_loader = DataLoader(val_ds, | ||
batch_size=1, | ||
num_workers=4, | ||
collate_fn=list_data_collate, | ||
pin_memory=torch.cuda.is_available()) | ||
|
||
# create UNet, DiceLoss and Adam optimizer | ||
model = monai.networks.nets.UNet( | ||
dimensions=3, | ||
in_channels=1, | ||
out_channels=1, | ||
channels=(16, 32, 64, 128, 256), | ||
strides=(2, 2, 2, 2), | ||
num_res_units=2, | ||
).to(device) | ||
loss_function = monai.losses.DiceLoss(do_sigmoid=True) | ||
optimizer = torch.optim.Adam(model.parameters(), 5e-4) | ||
|
||
# start a typical PyTorch training | ||
val_interval = 2 | ||
best_metric, best_metric_epoch = -1, -1 | ||
epoch_loss_values = list() | ||
metric_values = list() | ||
writer = SummaryWriter(log_dir=os.path.join(root_dir, 'runs')) | ||
model_filename = os.path.join(root_dir, 'best_metric_model.pth') | ||
for epoch in range(6): | ||
print('-' * 10) | ||
print('Epoch {}/{}'.format(epoch + 1, 5)) | ||
model.train() | ||
epoch_loss = 0 | ||
step = 0 | ||
for batch_data in train_loader: | ||
step += 1 | ||
inputs, labels = (batch_data['img'].to(device), batch_data['seg'].to(device)) | ||
optimizer.zero_grad() | ||
outputs = model(inputs) | ||
loss = loss_function(outputs, labels) | ||
loss.backward() | ||
optimizer.step() | ||
epoch_loss += loss.item() | ||
epoch_len = len(train_ds) // train_loader.batch_size | ||
print("%d/%d, train_loss:%0.4f" % (step, epoch_len, loss.item())) | ||
writer.add_scalar('train_loss', loss.item(), epoch_len * epoch + step) | ||
epoch_loss /= step | ||
epoch_loss_values.append(epoch_loss) | ||
print("epoch %d average loss:%0.4f" % (epoch + 1, epoch_loss)) | ||
|
||
if (epoch + 1) % val_interval == 0: | ||
model.eval() | ||
with torch.no_grad(): | ||
metric_sum = 0. | ||
metric_count = 0 | ||
val_images = None | ||
val_labels = None | ||
val_outputs = None | ||
for val_data in val_loader: | ||
val_images = val_data['img'] | ||
val_labels = val_data['seg'] | ||
sw_batch_size, roi_size = 4, (96, 96, 96) | ||
val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model, device) | ||
value = compute_meandice(y_pred=val_outputs, | ||
y=val_labels.to(device), | ||
include_background=True, | ||
to_onehot_y=False, | ||
mutually_exclusive=False) | ||
metric_count += len(value) | ||
metric_sum += value.sum().item() | ||
metric = metric_sum / metric_count | ||
metric_values.append(metric) | ||
if metric > best_metric: | ||
best_metric = metric | ||
best_metric_epoch = epoch + 1 | ||
torch.save(model.state_dict(), model_filename) | ||
print('saved new best metric model') | ||
print("current epoch %d current mean dice: %0.4f best mean dice: %0.4f at epoch %d" % | ||
(epoch + 1, metric, best_metric, best_metric_epoch)) | ||
writer.add_scalar('val_mean_dice', metric, epoch + 1) | ||
# plot the last model output as GIF image in TensorBoard with the corresponding image and label | ||
plot_2d_or_3d_image(val_images, epoch + 1, writer, index=0, tag='image') | ||
plot_2d_or_3d_image(val_labels, epoch + 1, writer, index=0, tag='label') | ||
plot_2d_or_3d_image(val_outputs, epoch + 1, writer, index=0, tag='output') | ||
print('train completed, best_metric: %0.4f at epoch: %d' % (best_metric, best_metric_epoch)) | ||
writer.close() | ||
return epoch_loss_values, best_metric, best_metric_epoch | ||
|
||
|
||
def run_inference_test(root_dir, device=torch.device("cuda:0")): | ||
images = sorted(glob(os.path.join(root_dir, 'im*.nii.gz'))) | ||
segs = sorted(glob(os.path.join(root_dir, 'seg*.nii.gz'))) | ||
val_files = [{'img': img, 'seg': seg} for img, seg in zip(images, segs)] | ||
|
||
# define transforms for image and segmentation | ||
val_transforms = transforms.Compose([ | ||
LoadNiftid(keys=['img', 'seg']), | ||
AsChannelFirstd(keys=['img', 'seg'], channel_dim=-1), | ||
Rescaled(keys=['img', 'seg']) | ||
]) | ||
val_ds = monai.data.Dataset(data=val_files, transform=val_transforms) | ||
# sliding window inferene need to input 1 image in every iteration | ||
val_loader = DataLoader(val_ds, | ||
batch_size=1, | ||
num_workers=4, | ||
collate_fn=list_data_collate, | ||
pin_memory=torch.cuda.is_available()) | ||
|
||
model = UNet( | ||
dimensions=3, | ||
in_channels=1, | ||
out_channels=1, | ||
channels=(16, 32, 64, 128, 256), | ||
strides=(2, 2, 2, 2), | ||
num_res_units=2, | ||
).to(device) | ||
|
||
model_filename = os.path.join(root_dir, 'best_metric_model.pth') | ||
model.load_state_dict(torch.load(model_filename)) | ||
model.eval() | ||
with torch.no_grad(): | ||
metric_sum = 0. | ||
metric_count = 0 | ||
saver = NiftiSaver(output_dir=os.path.join(root_dir, 'output'), dtype=int) | ||
for val_data in val_loader: | ||
# define sliding window size and batch size for windows inference | ||
sw_batch_size, roi_size = 4, (96, 96, 96) | ||
val_outputs = sliding_window_inference(val_data['img'], roi_size, sw_batch_size, model, device) | ||
val_labels = val_data['seg'].to(device) | ||
value = compute_meandice(y_pred=val_outputs, | ||
y=val_labels, | ||
include_background=True, | ||
to_onehot_y=False, | ||
mutually_exclusive=False) | ||
metric_count += len(value) | ||
metric_sum += value.sum().item() | ||
saver.save_batch( | ||
val_outputs, { | ||
'filename_or_obj': val_data['img.filename_or_obj'], 'original_affine': | ||
val_data['img.original_affine'], 'affine': val_data['img.affine'] | ||
}) | ||
metric = metric_sum / metric_count | ||
return metric | ||
|
||
|
||
class IntegrationSegmentation3D(unittest.TestCase): | ||
|
||
def setUp(self): | ||
torch.manual_seed(0) | ||
torch.backends.cudnn.deterministic = True | ||
torch.backends.cudnn.benchmark = False | ||
np.random.seed(0) | ||
|
||
self.data_dir = tempfile.mkdtemp() | ||
for i in range(40): | ||
im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1) | ||
n = nib.Nifti1Image(im, np.eye(4)) | ||
nib.save(n, os.path.join(self.data_dir, 'img%i.nii.gz' % i)) | ||
n = nib.Nifti1Image(seg, np.eye(4)) | ||
nib.save(n, os.path.join(self.data_dir, 'seg%i.nii.gz' % i)) | ||
|
||
np.random.seed(seed=None) | ||
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu:0') | ||
|
||
def tearDown(self): | ||
shutil.rmtree(self.data_dir) | ||
|
||
@skip_if_quick | ||
def test_training(self): | ||
losses, best_metric, best_metric_epoch = run_training_test(self.data_dir, device=self.device) | ||
|
||
# check training properties | ||
np.testing.assert_allclose(losses, [ | ||
0.5241468191146851, 0.4485286593437195, 0.42851402163505553, 0.4130884766578674, 0.39990419149398804, | ||
0.38985557556152345 | ||
], rtol=1e-5) | ||
np.testing.assert_allclose(best_metric, 0.9660249322652816, rtol=1e-5) | ||
np.testing.assert_allclose(best_metric_epoch, 4) | ||
self.assertTrue(len(glob(os.path.join(self.data_dir, 'runs'))) > 0) | ||
model_file = os.path.join(self.data_dir, 'best_metric_model.pth') | ||
self.assertTrue(os.path.exists(model_file)) | ||
|
||
infer_metric = run_inference_test(self.data_dir, device=self.device) | ||
|
||
# check inference properties | ||
np.testing.assert_allclose(infer_metric, 0.9674960002303123, rtol=1e-5) | ||
output_files = sorted(glob(os.path.join(self.data_dir, 'output', 'img*', '*.nii.gz'))) | ||
sums = [616752.0, 642981.0, 653042.0, 615904.0, 651592.0, 680353.0, 648408.0, 670216.0, 693561.0, 746859.0, | ||
678080.0, 603877.0, 653672.0, 559537.0, 669992.0, 663388.0, 705862.0, 564044.0, 656242.0, 697152.0, | ||
726184.0, 698474.0, 701097.0, 600841.0, 681251.0, 652593.0, 717659.0, 701682.0, 597122.0, 542172.0, | ||
582078.0, 627985.0, 598525.0, 649180.0, 639703.0, 656896.0, 696359.0, 660675.0, 643457.0, 506309.0] | ||
for (output, s) in zip(output_files, sums): | ||
np.testing.assert_allclose(np.sum(nib.load(output).get_fdata()), s, rtol=1e-5) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
Oops, something went wrong.