Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update data labeler #1129

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 11 additions & 5 deletions dataprofiler/profilers/data_labeler_column_profile.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,9 @@
from typing import Dict, cast

import numpy as np
from pandas import DataFrame, Series
import pandas as pd
import polars as pl
from polars import Series

from ..labelers.base_data_labeler import BaseDataLabeler
from ..labelers.data_labelers import DataLabeler
Expand Down Expand Up @@ -394,7 +396,7 @@ def diff(self, other_profile: DataLabelerColumn, options: dict = None) -> dict:
@BaseColumnProfiler._timeit(name="data_labeler_predict")
def _update_predictions(
self,
df_series: DataFrame,
df_series: Series,
prev_dependent_properties: dict = None,
subset_properties: dict = None,
) -> None:
Expand All @@ -411,8 +413,9 @@ def _update_predictions(
:type df_series: pandas.DataFrame
:return: None
"""
df_series_pd = df_series.to_pandas()
predictions = self.data_labeler.predict(
df_series, predict_options=dict(show_confidences=True)
df_series_pd, predict_options=dict(show_confidences=True)
)
# remove PAD from output (reserved zero index)
if self.data_labeler.model.requires_zero_mapping:
Expand Down Expand Up @@ -441,7 +444,7 @@ def _update_helper(self, df_series_clean: Series, profile: dict) -> None:
Update the column profile properties.
:param df_series_clean: df series with nulls removed
:type df_series_clean: pandas.core.series.Series
:type df_series_clean: polars.Series
:param profile: float profile dictionary
:type profile: dict
:return: None
Expand All @@ -453,10 +456,13 @@ def update(self, df_series: Series) -> DataLabelerColumn:
Update the column profile.
:param df_series: df series
:type df_series: pandas.core.series.Series
:type df_series: polars.Series
:return: updated DataLabelerColumn
:rtype: DataLabelerColumn
"""
# TODO remove onces profiler builder is updated
if type(df_series) == pd.Series:
df_series = pl.from_pandas(df_series) # type: ignore
if len(df_series) == 0:
return self

Expand Down
42 changes: 22 additions & 20 deletions dataprofiler/tests/profilers/test_data_labeler_column_profile.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
from unittest import mock

import numpy as np
import pandas as pd
import polars as pl

from dataprofiler.labelers import BaseDataLabeler
from dataprofiler.profilers import profiler_utils
Expand All @@ -21,6 +21,8 @@
spec=BaseDataLabeler,
)
class TestDataLabelerColumnProfiler(unittest.TestCase):
maxDiff = None

@staticmethod
def _setup_data_labeler_mock(mock_instance):
mock_DataLabeler = mock_instance.return_value
Expand All @@ -46,7 +48,7 @@ def mock_predict(data, *args, **kwargs):
def test_base_case(self, mock_instance):
self._setup_data_labeler_mock(mock_instance)

data = pd.Series([], dtype=object)
data = pl.Series([], dtype=object)
profiler = DataLabelerColumn(data.name)

time_array = [float(i) for i in range(4, 0, -1)]
Expand Down Expand Up @@ -74,7 +76,7 @@ def test_base_case(self, mock_instance):
def test_update(self, mock_instance):
self._setup_data_labeler_mock(mock_instance)

data = pd.Series(["1", "2", "3"])
data = pl.Series(["1", "2", "3"])
profiler = DataLabelerColumn(data.name)
profiler.update(data)

Expand All @@ -93,7 +95,7 @@ def test_update_reserve_label_mapping(self, mock_instance):
mock_DataLabeler.reverse_label_mapping = {0: "PAD", 1: "a", 2: "b"}
mock_DataLabeler.model.num_labels = 3

data = pd.Series(["1", "2", "3"])
data = pl.Series(["1", "2", "3"])
profiler = DataLabelerColumn(data.name)
profiler.update(data)

Expand All @@ -111,7 +113,7 @@ def mock_low_predict(data, *args, **kwargs):

mock_instance.return_value.predict.side_effect = mock_low_predict

data = pd.Series(["1"])
data = pl.Series(["1"])
profiler = DataLabelerColumn(data.name)
profiler.update(data)
self.assertEqual("could not determine", profiler.data_label)
Expand Down Expand Up @@ -144,15 +146,15 @@ def mock_low_predict(data, *args, **kwargs):

mock_instance.return_value.predict.side_effect = mock_low_predict

data = pd.Series(["1"] * 10)
data = pl.Series(["1"] * 10)
profiler = DataLabelerColumn(data.name)
profiler.update(data)
self.assertEqual("a|c|b", profiler.data_label)

def test_profile(self, mock_instance):
self._setup_data_labeler_mock(mock_instance)

data = pd.Series(["1", "2", "3"])
data = pl.Series(["1", "2", "3"])
profiler = DataLabelerColumn(data.name)

expected_profile = {
Expand Down Expand Up @@ -180,7 +182,7 @@ def test_profile(self, mock_instance):
def test_report(self, mock_instance):
self._setup_data_labeler_mock(mock_instance)

data = pd.Series(["1", "2", "3"])
data = pl.Series(["1", "2", "3"])
profile = DataLabelerColumn(data.name)

report1 = profile.profile
Expand All @@ -206,7 +208,7 @@ def test_label_match(self, mock_instance):
mock_DataLabeler.model.num_labels = 4
mock_DataLabeler.model.requires_zero_mapping = False

data = pd.Series(["1", "2", "3", "4", "5", "6"])
data = pl.Series(["1", "2", "3", "4", "5", "6"])
profiler = DataLabelerColumn(data.name)
profiler.sample_size = 1

Expand All @@ -217,8 +219,8 @@ def test_label_match(self, mock_instance):
def test_profile_merge(self, mock_instance):
self._setup_data_labeler_mock(mock_instance)

data = pd.Series(["1", "2", "3", "11"])
data2 = pd.Series(["4", "5", "6", "7", "9", "10", "12"])
data = pl.Series(["1", "2", "3", "11"])
data2 = pl.Series(["4", "5", "6", "7", "9", "10", "12"])

expected_profile = {
"data_label": "a|b",
Expand Down Expand Up @@ -313,8 +315,8 @@ def test_profile_merge_with_different_options(self, mock_instance):
self._setup_data_labeler_mock(mock_instance)

# Different max_sample_size values
data = pd.Series(["1", "2", "3", "11"])
data2 = pd.Series(["4", "5", "6", "7", "9", "10", "12"])
data = pl.Series(["1", "2", "3", "11"])
data2 = pl.Series(["4", "5", "6", "7", "9", "10", "12"])
options = DataLabelerOptions()
options.max_sample_size = 20
profiler = DataLabelerColumn(data.name, options=options)
Expand Down Expand Up @@ -392,8 +394,8 @@ def test_empty_data(self, *mocks):

# Mock out the data_label, avg_predictions, and label_representation
# properties
profiler1.update(pd.Series())
profiler2.update(pd.Series())
profiler1.update(pl.Series())
profiler2.update(pl.Series())

merge_profile = profiler1 + profiler2
self.assertIsNone(merge_profile._rank_distribution)
Expand Down Expand Up @@ -447,7 +449,7 @@ def test_json_encode(self, mock_instance):

def test_json_encode_after_update(self, mock_instance):
self._setup_data_labeler_mock(mock_instance)
data = pd.Series(["1", "2", "3", "4"], dtype=object)
data = pl.Series(["1", "2", "3", "4"], dtype=object)
profiler = DataLabelerColumn(data.name)
profiler.data_labeler._default_model_loc = "this is a test model loc"
with test_utils.mock_timeit():
Expand All @@ -458,7 +460,7 @@ def test_json_encode_after_update(self, mock_instance):
{
"class": "DataLabelerColumn",
"data": {
"name": None,
"name": "",
"col_index": float("nan"),
"sample_size": 4,
"metadata": {},
Expand Down Expand Up @@ -492,7 +494,7 @@ def test_json_decode(self, mock_utils_DataLabeler, mock_BaseDataLabeler):
self._setup_data_labeler_mock(mock_BaseDataLabeler)
mock_utils_DataLabeler.load_from_library.side_effect = mock_BaseDataLabeler

data = pd.Series(["1", "2", "3", "4"], dtype=object)
data = pl.Series(["1", "2", "3", "4"], dtype=object)
expected = DataLabelerColumn(data.name)
expected.data_labeler._default_model_loc = "structured_model"
serialized = json.dumps(expected, cls=ProfileEncoder)
Expand Down Expand Up @@ -537,7 +539,7 @@ def test_json_decode_after_update(
self._setup_data_labeler_mock(mock_BaseDataLabeler)
mock_utils_DataLabeler.load_from_library.side_effect = mock_BaseDataLabeler

data = pd.Series(["1", "2", "3", "4"], dtype=object)
data = pl.Series(["1", "2", "3", "4"], dtype=object)
expected = DataLabelerColumn(data.name)
expected.data_labeler._default_model_loc = "structured_model"
with test_utils.mock_timeit():
Expand All @@ -547,7 +549,7 @@ def test_json_decode_after_update(
deserialized = load_column_profile(json.loads(serialized))

test_utils.assert_profiles_equal(deserialized, expected)
update_data = pd.Series(["4", "5", "6", "7"], dtype=object)
update_data = pl.Series(["4", "5", "6", "7"], dtype=object)
deserialized.update(update_data)

assert deserialized.sample_size == 8
Expand Down