Code for paper Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators
Link to paper:
Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators (arXiv preprint arXiv:2403.16950)
This paper has been accepted by COLM 2024.
If you are interested in pairwise evaluator, please also checkout our latest work on zero-shot automatic prompt optimization for pairwise evaluators.
We provide a ready-to-use Python library for Pairwise preference ranking (PairS). We show a ranking demonstration below.
For an input source text and a sequence of output candidates, PairsGreedy
and PairsBeam
can be used to rank the output candidates in ascending order.
We currently support the following base models: google/gemma-2-9b-it, google/gemma-2-27b-it, meta-llama/Meta-Llama-3-8B-Instruct, microsoft/Phi-3-medium-4k-instruct, microsoft/Phi-3-mini-4k-instruct, mistralai/Mistral-7B-Instruct-v0.1, meta-llama/Llama-2-7b-chat-hf, meta-llama/Llama-2-13b-chat-hf, HuggingFaceH4/zephyr-7b-beta, gpt-3.5-turbo, gpt-4-turbo
.
from pairs import PairsGreedy, PairsBeam
from scripts.utils import shuffle_lists, load_summEval
# Load example data
summ_eval_path = 'data/SummEval/model_annotations.aligned.paired.jsonl'
input_doc, output_doc, _ = load_summEval(summ_eval_path, flat_output=False)
doc_id = 42
input, output = input_doc[doc_id], output_doc[doc_id]
input, output = shuffle_lists(input, output)
# The same input source text corresponds to multiple output summaries
print('Number of summary candidates:', len(output))
method = 'PairsGreedy'
if method == 'PairsGreedy':
# Set hyperparameters
params = {
# 'engine': "mistralai/Mistral-7B-Instruct-v0.1",
'engine': "meta-llama/Llama-2-7b-chat-hf",
'api_call': 0,
'with_input': True, # Use the prompt template for task with context input, e.g. Summarization
'calibrate': False, # For each pairwise comparison, we average the probabilities of both permutations to cancel the positional bias.
}
# Rank the output summaries from low to high quality
indices = PairsGreedy(input[0], output, params)
print(indices)
elif method == 'PairsBeam':
# Set hyperparameters
params = {
'engine': "mistralai/Mistral-7B-Instruct-v0.1",
'beam_size': 2000,
'api_call': 0,
'prob_gap': 0.1,
'with_input': True,
'calibrate': False,
}
# Rank the output summaries from low to high quality
indices = PairsBeam(input[0], output, params)
print(indices)
We also present the original code (in the folder scripts/
) to evalute on the datasets reported in the paper.
For NewsRoom and SummEval
bash pairs_run.sh
We provide a Notebook demonstrations in notebooks/
.
Load dataset: We put all datasets loading in scripts/utils.py
.
Prompts: We put all prompts and instructions in scripts/prompts.py
.
Base models: We supports the following base models, mistralai/Mistral-7B-Instruct-v0.1
, meta-llama/Llama-2-7b-chat-hf
, all versions of GPT-3.5-turbo
and GPT-4-turbo
.
Hyper-parameters:
-
dataset
: We support 3 datasets, 'newsroom', 'SummEval' and 'hanna'. -
eval_method
: For all PairS method, we use 'pairwise comparison'. -
engine
: The base models. -
with_input
: If the data format has input text. For example, the summarization task has source text as input, but story writing task has no input text. -
confidence_beam
:True
for PairS-beam andFalse
for PairS-greedy. -
prob_gap
: The uncertainty tolerance.$0.1$ represents we will create beam candidates for both A and B if$0.5-0.1 < P(A\succ B) < 0.5+0.1$ . -
calibrate
: LLMs suffer from positional bias. Set this asTrue
will average the probabilities of both permutations of A and B for each pairwise comparison. This will cancel the positional bias.
More details and comments will be added soon.
The PairS-Greedy can be understood as a merge sort with pairwise comparison by LLMs, while the PairS-Beam is to do a beam-search for each merge operation. In order to improve the beam search efficiency and limit the search space, we also apply a local uncertainty-based prunning mechanism.
We show the algorithm of the modified merge operation for PairS-Beam below.
For more details please check out our paper.If you find our work helpful, please consider citing our paper:
@article{liu2024aligning,
title={Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators},
author={Liu, Yinhong and Zhou, Han and Guo, Zhijiang and Shareghi, Ehsan and Vulic, Ivan and Korhonen, Anna and Collier, Nigel},
journal={arXiv preprint arXiv:2403.16950},
year={2024}
}