-
-
Notifications
You must be signed in to change notification settings - Fork 300
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
31069e5
commit cc14507
Showing
11 changed files
with
531 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,166 @@ | ||
package iforest | ||
|
||
import ( | ||
"math" | ||
"math/rand" | ||
"sync" | ||
) | ||
|
||
const ( | ||
defaultNumTrees = 100 | ||
defaultSampleSize = 256 | ||
defaultScoreThreshold = 0.6 | ||
defaultDetectionType = DetectionTypeThreshold | ||
offset = 0.5 | ||
) | ||
|
||
type DetectionType string | ||
|
||
const ( | ||
DetectionTypeThreshold DetectionType = "threshold" | ||
DetectionTypeProportion DetectionType = "proportion" | ||
) | ||
|
||
type Options struct { | ||
DetectionType DetectionType `json:"detectionType"` | ||
Threshold float64 `json:"threshold"` | ||
Proportion float64 `json:"proportion"` | ||
NumTrees int `json:"numTrees"` | ||
SampleSize int `json:"sampleSize"` | ||
MaxDepth int `json:"maxDepth"` | ||
} | ||
|
||
func (o *Options) SetDefaultValues() { | ||
if o.DetectionType == "" { | ||
o.DetectionType = defaultDetectionType | ||
} | ||
|
||
if o.Threshold == 0 { | ||
o.Threshold = defaultScoreThreshold | ||
} | ||
|
||
if o.NumTrees == 0 { | ||
o.NumTrees = defaultNumTrees | ||
} | ||
|
||
if o.SampleSize == 0 { | ||
o.SampleSize = defaultSampleSize | ||
} | ||
|
||
if o.MaxDepth == 0 { | ||
o.MaxDepth = int(math.Ceil(math.Log2(float64(o.SampleSize)))) | ||
} | ||
} | ||
|
||
type IsolationForest struct { | ||
*Options | ||
|
||
Trees []*TreeNode | ||
} | ||
|
||
func New() *IsolationForest { | ||
options := &Options{} | ||
options.SetDefaultValues() | ||
return &IsolationForest{Options: options} | ||
} | ||
|
||
func NewWithOptions(options Options) *IsolationForest { | ||
options.SetDefaultValues() | ||
return &IsolationForest{Options: &options} | ||
} | ||
|
||
func (f *IsolationForest) Fit(samples [][]float64) { | ||
wg := sync.WaitGroup{} | ||
wg.Add(f.NumTrees) | ||
|
||
f.Trees = make([]*TreeNode, f.NumTrees) | ||
for i := 0; i < f.NumTrees; i++ { | ||
sampled := SampleRows(samples, f.SampleSize) | ||
go func(index int) { | ||
defer wg.Done() | ||
tree := f.BuildTree(sampled, 0) | ||
f.Trees[index] = tree | ||
}(i) | ||
} | ||
wg.Wait() | ||
} | ||
|
||
func (f *IsolationForest) BuildTree(samples [][]float64, depth int) *TreeNode { | ||
numSamples := len(samples) | ||
if numSamples == 0 { | ||
return &TreeNode{} | ||
} | ||
numFeatures := len(samples[0]) | ||
if depth >= f.MaxDepth || numSamples <= 1 { | ||
return &TreeNode{Size: numSamples} | ||
} | ||
|
||
splitIndex := rand.Intn(numFeatures) | ||
column := Column(samples, splitIndex) | ||
minValue, maxValue := MinMax(column) | ||
splitValue := rand.Float64()*(maxValue-minValue) + minValue | ||
|
||
leftSamples := make([][]float64, 0) | ||
rightSamples := make([][]float64, 0) | ||
for _, sample := range samples { | ||
if sample[splitIndex] < splitValue { | ||
leftSamples = append(leftSamples, sample) | ||
} else { | ||
rightSamples = append(rightSamples, sample) | ||
} | ||
} | ||
|
||
return &TreeNode{ | ||
Left: f.BuildTree(leftSamples, depth+1), | ||
Right: f.BuildTree(rightSamples, depth+1), | ||
SplitIndex: splitIndex, | ||
SplitValue: splitValue, | ||
} | ||
} | ||
|
||
func (f *IsolationForest) Score(samples [][]float64) []float64 { | ||
scores := make([]float64, len(samples)) | ||
for i, sample := range samples { | ||
score := 0.0 | ||
for _, tree := range f.Trees { | ||
score += pathLength(sample, tree, 0) | ||
} | ||
scores[i] = math.Pow(2.0, -score/float64(len(f.Trees))/averagePathLength(float64(f.SampleSize))) | ||
} | ||
return scores | ||
} | ||
|
||
func (f *IsolationForest) Predict(samples [][]float64) []int { | ||
predictions := make([]int, len(samples)) | ||
scores := f.Score(samples) | ||
|
||
var threshold float64 | ||
switch f.DetectionType { | ||
case DetectionTypeThreshold: | ||
threshold = f.Threshold | ||
case DetectionTypeProportion: | ||
threshold = Quantile(f.Score(samples), 1-f.Proportion) | ||
default: | ||
panic("Invalid detection type") | ||
} | ||
|
||
for i, score := range scores { | ||
if score >= threshold { | ||
predictions[i] = 1 | ||
} else { | ||
predictions[i] = 0 | ||
} | ||
} | ||
|
||
return predictions | ||
} | ||
|
||
func (f *IsolationForest) FeatureImportance(sample []float64) []int { | ||
importance := make([]int, len(sample)) | ||
for _, tree := range f.Trees { | ||
for i, value := range tree.FeatureImportance(sample) { | ||
importance[i] += value | ||
} | ||
} | ||
return importance | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
package iforest | ||
|
||
import ( | ||
"testing" | ||
) | ||
|
||
func TestIsolationForest(t *testing.T) { | ||
tests := []struct { | ||
features [][]float64 | ||
predictions []int | ||
}{ | ||
{ | ||
[][]float64{ | ||
{0, 0, 0}, | ||
{0, 0, 0}, | ||
{0, 0, 0}, | ||
{1, 1, 1}, | ||
}, | ||
[]int{0, 0, 0, 1}, | ||
}, | ||
} | ||
|
||
for _, tt := range tests { | ||
forest := New() | ||
forest.Fit(tt.features) | ||
|
||
preds := forest.Predict(tt.features) | ||
for i, pred := range preds { | ||
if pred != tt.predictions[i] { | ||
t.Errorf("expected %v, got %v", tt.predictions[i], pred) | ||
} | ||
} | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
package iforest | ||
|
||
import ( | ||
"math" | ||
"math/rand" | ||
) | ||
|
||
func SampleRows(matrix [][]float64, size int) [][]float64 { | ||
if size <= 0 { | ||
panic("size must be greater than 0") | ||
} | ||
|
||
if len(matrix) <= size { | ||
return matrix | ||
} | ||
|
||
perm := rand.Perm(len(matrix)) | ||
sampled := make([][]float64, size) | ||
for i := 0; i < size; i++ { | ||
sampled[i] = matrix[perm[i]] | ||
} | ||
return sampled | ||
} | ||
|
||
func Column(matrix [][]float64, columnIndex int) []float64 { | ||
column := make([]float64, len(matrix)) | ||
for i, row := range matrix { | ||
column[i] = row[columnIndex] | ||
} | ||
return column | ||
} | ||
|
||
func MinMax(floats []float64) (float64, float64) { | ||
min, max := math.Inf(1), math.Inf(-1) | ||
for _, v := range floats { | ||
if v < min { | ||
min = v | ||
} | ||
if v > max { | ||
max = v | ||
} | ||
} | ||
return min, max | ||
} |
Oops, something went wrong.