Skip to content

Commit

Permalink
add auto igemm for gpt, vit (#408)
Browse files Browse the repository at this point in the history
  • Loading branch information
godweiyang authored Oct 24, 2022
1 parent 7c03c4d commit b665742
Show file tree
Hide file tree
Showing 11 changed files with 202 additions and 86 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,7 @@ def extract_gpt_weights(
eos_id=50256,
pad_id=50257,
max_step=50,
extra_decode_length=0,
):
# load var names
with open(os.path.join(os.path.dirname(model_dir), "config.json")) as f:
Expand Down Expand Up @@ -121,6 +122,9 @@ def extract_gpt_weights(
hdf5_file.create_dataset("model_conf/topp", data=topp, dtype="f4")
hdf5_file.create_dataset("model_conf/topk", data=topk, dtype="i4")
hdf5_file.create_dataset("model_conf/eos_id", data=eos_id, dtype="i4")
hdf5_file.create_dataset(
"model_conf/extra_decode_length", data=extra_decode_length, dtype="i4"
)

hdf5_file.close()
# read-in again to double check
Expand Down Expand Up @@ -150,6 +154,7 @@ def _print_pair(key, value):
eos_id = 50256
pad_id = 50257
max_step = 50
extra_decode_length = 0 # use positive length to avtivate it
extract_gpt_weights(
hdf5_path,
args.model,
Expand All @@ -159,4 +164,5 @@ def _print_pair(key, value):
eos_id=eos_id,
pad_id=pad_id,
max_step=max_step,
extra_decode_length=extra_decode_length,
)
4 changes: 3 additions & 1 deletion lightseq/csrc/kernels/includes/cublas_algo_map.h
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,9 @@
#define STRIDE 32
#define BORDER 512

static std::string DEFAULT_URL = "https://zenodo.org/record/7219754/files/";
static std::string DEFAULT_URL =
"http://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/lightseq/"
"igemm_configs/";
static std::string DEFAULT_DIR =
std::string(std::getenv("HOME")) + "/.lightseq/igemm_configs/";
static std::string IGEMM_T4_CONFIG = "igemm_T4.cfg";
Expand Down
4 changes: 3 additions & 1 deletion lightseq/inference/model/cublas_algo_map.h
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,9 @@ namespace cuda {
#define STRIDE 32
#define BORDER 512

static std::string DEFAULT_URL = "https://zenodo.org/record/7219754/files/";
static std::string DEFAULT_URL =
"http://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/lightseq/"
"igemm_configs/";
static std::string DEFAULT_DIR =
std::string(std::getenv("HOME")) + "/.lightseq/igemm_configs/";
static std::string IGEMM_T4_CONFIG = "igemm_T4.cfg";
Expand Down
9 changes: 4 additions & 5 deletions lightseq/inference/model/gpt_encoder.cc.cu
Original file line number Diff line number Diff line change
Expand Up @@ -248,15 +248,15 @@ int GptEncoder<OpType_>::run_one_sample(int batch_size, int batch_seq_len) {
ker_norm_layer_launcher<_DataType>(
_batch_token_num, _tw._hidden_size, _stream, _p_d_query,
_p_d_src_emb_wei[2], _p_d_src_emb_wei[3], _max_thread_per_block);
if (sample_one_token() == 0 || _batch_seq_len >= _tw._max_step) {
if (sample_one_token() == 0 || _batch_seq_len >= _batch_max_seq_len) {
CHECK_GPU_ERROR(cudaMemcpyAsync(_p_d_sample_id_buf, _p_d_sample_id,
_batch_token_num * sizeof(int),
cudaMemcpyDeviceToDevice, _stream));
CHECK_GPU_ERROR(cudaStreamSynchronize(_stream));
return _batch_seq_len;
}

while (_batch_seq_len < _tw._max_step) {
while (_batch_seq_len < _batch_max_seq_len) {
#ifdef DEBUG_RESULT
std::cout << "before sample:batch_size-" << _batch_size << " batch_seq_len-"
<< _batch_seq_len << std::endl;
Expand All @@ -282,14 +282,13 @@ int GptEncoder<OpType_>::run_one_sample(int batch_size, int batch_seq_len) {
ker_norm_layer_launcher<_DataType>(
_batch_size, _tw._hidden_size, _stream, _p_d_query, _p_d_src_emb_wei[2],
_p_d_src_emb_wei[3], _max_thread_per_block);

#ifdef DEBUG_RESULT
print_vec(_p_d_query, "_p_d_query before logits",
_batch_size * _tw._hidden_size - 10,
_batch_size * _tw._hidden_size);

if (sample_one_token_with_cache() == 0 || _batch_seq_len >= _tw._max_step)
break;
#else

bool unfinish = sample_one_token_with_cache();
if (!unfinish && !_is_benchmark) break;
#endif
Expand Down
133 changes: 91 additions & 42 deletions lightseq/inference/model/quant_gpt_encoder.cc.cu
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@ QuantGptEncoder<OpType_>::QuantGptEncoder(
_h_sample_id(max_batch_size * tw._max_step, 0),
_h_unfinished(1),
_is_benchmark(false),
_algo_map(),
_sm_gt_eq_80(getSMVersion() >= 80 ? true : false) {
CHECK_GPU_ERROR(cublasLtCreate(&_cublas_lt_handle));
}
Expand Down Expand Up @@ -179,11 +180,13 @@ void QuantGptEncoder<OpType_>::init_buffer() {
_p_device_wei.push_back(
to_gpu(_p_d_enc_wei[_weight_offset + 11], _tw._hidden_size, _stream));

auto weight_layout = _sm_gt_eq_80 ? kColMajor : kColMajor32;

quantize_weight(_p_d_enc_wei[_weight_offset + 2],
_int8_p_d_enc_wei[_layer_id * 4], _tw._hidden_size,
_tw._hidden_size * 3,
_quant_range / _enc_clip_max[_layer_id * 12], _stream,
_cublas_lt_handle);
_cublas_lt_handle, weight_layout);

quantize_weight(_p_d_enc_wei[_weight_offset + 4],
_int8_p_d_enc_wei[_layer_id * 4 + 1], _tw._hidden_size,
Expand All @@ -195,7 +198,7 @@ void QuantGptEncoder<OpType_>::init_buffer() {
_int8_p_d_enc_wei[_layer_id * 4 + 2], _tw._hidden_size,
_tw._inner_size,
_quant_range / _enc_clip_max[_layer_id * 12 + 2], _stream,
_cublas_lt_handle);
_cublas_lt_handle, weight_layout);

quantize_weight(_p_d_enc_wei[_weight_offset + 10],
_int8_p_d_enc_wei[_layer_id * 4 + 3], _tw._inner_size,
Expand Down Expand Up @@ -306,6 +309,8 @@ int QuantGptEncoder<OpType_>::run_one_sample(int batch_size,
_batch_size = batch_size;
_batch_seq_len = batch_seq_len;
_batch_token_num = batch_size * batch_seq_len;
_batch_max_seq_len =
min(_tw._max_step, batch_seq_len + _tw._extra_decode_length);

CHECK_GPU_ERROR(cudaMemcpyAsync(_p_d_real_seq_len, _h_real_seq_len.data(),
sizeof(int) * _batch_size,
Expand Down Expand Up @@ -345,15 +350,15 @@ int QuantGptEncoder<OpType_>::run_one_sample(int batch_size,
_p_d_self_v_cache2 = _p_d_self_v_cache1;
_p_d_self_v_cache1 = ftmp;

if (sample_one_token() == 0 || _batch_seq_len >= _tw._max_step) {
if (sample_one_token() == 0 || _batch_seq_len >= _batch_max_seq_len) {
CHECK_GPU_ERROR(cudaMemcpyAsync(_p_d_sample_id_buf, _p_d_sample_id,
_batch_token_num * sizeof(int),
cudaMemcpyDeviceToDevice, _stream));
CHECK_GPU_ERROR(cudaStreamSynchronize(_stream));
return _batch_seq_len;
}

while (_batch_seq_len < _tw._max_step) {
while (_batch_seq_len < _batch_max_seq_len) {
#ifdef DEBUG_RESULT
std::cout << "before sample:batch_size-" << _batch_size << " batch_seq_len-"
<< _batch_seq_len << std::endl;
Expand Down Expand Up @@ -485,16 +490,25 @@ void QuantGptEncoder<OpType_>::self_attention() {
_int8_ffn_in_buf, _p_device_wei[_weight_offset],
_p_device_wei[_weight_offset + 1], _p_device_wei[_weight_offset + 5],
_max_thread_per_block, _quant_range / _enc_clip_max[_layer_id * 12 + 4],
false, true);
false, !_sm_gt_eq_80);
}

cublasLtMM_withAlgo_i8IO(
_int8_ffn_out_buf, 1, _batch_token_num, _tw._hidden_size * 3,
_tw._hidden_size, 0, 0, 0,
_enc_clip_max[_layer_id * 12] * _enc_clip_max[_layer_id * 12 + 4] /
(_enc_clip_max[_layer_id * 12 + 8] * _quant_range),
_int8_ffn_in_buf, _int8_p_d_enc_wei[_layer_id * 4], _cublas_lt_handle,
_stream, _sm_gt_eq_80);
if (_sm_gt_eq_80) {
cublaslt_gemm(
_int8_p_d_enc_wei[_layer_id * 4], _int8_ffn_in_buf, _int8_ffn_out_buf,
1, _tw._hidden_size * 3, _batch_token_num, _tw._hidden_size, 0, 0, 0,
_enc_clip_max[_layer_id * 12] * _enc_clip_max[_layer_id * 12 + 4] /
(_enc_clip_max[_layer_id * 12 + 8] * _quant_range),
_cublas_lt_handle, _stream, _algo_map);
} else {
cublasLtMM_withAlgo_i8IO(
_int8_ffn_out_buf, 1, _batch_token_num, _tw._hidden_size * 3,
_tw._hidden_size, 0, 0, 0,
_enc_clip_max[_layer_id * 12] * _enc_clip_max[_layer_id * 12 + 4] /
(_enc_clip_max[_layer_id * 12 + 8] * _quant_range),
_int8_ffn_in_buf, _int8_p_d_enc_wei[_layer_id * 4], _cublas_lt_handle,
_stream, _sm_gt_eq_80);
}

#ifdef DEBUG_RESULT
print_vec(_int8_ffn_in_buf, "attn qkv in", 20);
Expand All @@ -509,7 +523,7 @@ void QuantGptEncoder<OpType_>::self_attention() {
_p_d_self_k_cache1[_layer_id], _p_d_self_v_cache1[_layer_id], _p_d_v,
_batch_seq_len, _tw._dim_per_head, _tw._head_num, _max_thread_per_block,
_enc_clip_max[_layer_id * 12 + 8] / _quant_range,
_quant_range / _enc_clip_max[_layer_id * 12 + 11], true);
_quant_range / _enc_clip_max[_layer_id * 12 + 11], !_sm_gt_eq_80);

/* ---step 2. correlation = q * k, perform softmax on correlation--- */
CHECK_GPU_ERROR(cublasGemmStridedBatchedEx(
Expand Down Expand Up @@ -563,7 +577,7 @@ void QuantGptEncoder<OpType_>::self_attention() {
_int8_ffn_in_buf, _p_d_query, _batch_token_num, _tw._hidden_size,
_enc_clip_max[_layer_id * 12 + 9] / _quant_range,
_quant_range / _enc_clip_max[_layer_id * 12 + 6], _max_thread_per_block,
_stream, false, false, true);
_stream, false, false, !_sm_gt_eq_80);

return;
}
Expand All @@ -576,18 +590,27 @@ void QuantGptEncoder<OpType_>::self_attention_with_cache() {
_batch_size, _tw._hidden_size, _stream, _p_d_query, _int8_ffn_in_buf,
_p_device_wei[_weight_offset], _p_device_wei[_weight_offset + 1],
_p_device_wei[_weight_offset + 5], _max_thread_per_block,
_quant_range / _enc_clip_max[_layer_id * 12 + 4], false, true);
_quant_range / _enc_clip_max[_layer_id * 12 + 4], false, !_sm_gt_eq_80);
}

/* ---step 1. qkv = ori_q * qkv_wei + bias, and reshape qkv for multi-head
* gemm--- */
cublasLtMM_withAlgo_i8IO(
_int8_ffn_out_buf, 1, _batch_size, _tw._hidden_size * 3, _tw._hidden_size,
0, 0, 0,
_enc_clip_max[_layer_id * 12] * _enc_clip_max[_layer_id * 12 + 4] /
(_enc_clip_max[_layer_id * 12 + 8] * _quant_range),
_int8_ffn_in_buf, _int8_p_d_enc_wei[_layer_id * 4], _cublas_lt_handle,
_stream, _sm_gt_eq_80);
if (_sm_gt_eq_80) {
cublaslt_gemm(
_int8_p_d_enc_wei[_layer_id * 4], _int8_ffn_in_buf, _int8_ffn_out_buf,
1, _tw._hidden_size * 3, _batch_size, _tw._hidden_size, 0, 0, 0,
_enc_clip_max[_layer_id * 12] * _enc_clip_max[_layer_id * 12 + 4] /
(_enc_clip_max[_layer_id * 12 + 8] * _quant_range),
_cublas_lt_handle, _stream, _algo_map);
} else {
cublasLtMM_withAlgo_i8IO(
_int8_ffn_out_buf, 1, _batch_size, _tw._hidden_size * 3,
_tw._hidden_size, 0, 0, 0,
_enc_clip_max[_layer_id * 12] * _enc_clip_max[_layer_id * 12 + 4] /
(_enc_clip_max[_layer_id * 12 + 8] * _quant_range),
_int8_ffn_in_buf, _int8_p_d_enc_wei[_layer_id * 4], _cublas_lt_handle,
_stream, _sm_gt_eq_80);
}

// get q, k, v by split and reshape qkv
ker_arrange_qkv_with_cache_i8I_i8O_launcher<_DataType>(
Expand All @@ -597,7 +620,7 @@ void QuantGptEncoder<OpType_>::self_attention_with_cache() {
_p_d_self_v_cache1[_layer_id], _p_d_self_v_cache2[_layer_id],
_batch_seq_len, _tw._dim_per_head, _tw._head_num,
_enc_clip_max[_layer_id * 12 + 8] / _quant_range,
_quant_range / _enc_clip_max[_layer_id * 12 + 11], true);
_quant_range / _enc_clip_max[_layer_id * 12 + 11], !_sm_gt_eq_80);

/* ---step 2. correlation = q * k, perform softmax on correlation
correlation: [batch_size, heads_num, 1, batch_seq_len]--- */
Expand Down Expand Up @@ -630,20 +653,30 @@ void QuantGptEncoder<OpType_>::self_attention_with_cache() {
_int8_ffn_in_buf, _p_d_query, _batch_size, _tw._hidden_size,
_enc_clip_max[_layer_id * 12 + 9] / _quant_range,
_quant_range / _enc_clip_max[_layer_id * 12 + 6], _max_thread_per_block,
_stream, false, false, true);
_stream, false, false, !_sm_gt_eq_80);
return;
}

template <OperationType OpType_>
void QuantGptEncoder<OpType_>::ffn_add_norm() {
/* ---step 1. first ffn layer--- */
cublasLtMM_withAlgo_i8IO(
_int8_ffn_out_buf, 1, _batch_token_num, _tw._inner_size, _tw._hidden_size,
0, 0, 0,
_enc_clip_max[_layer_id * 12 + 2] * _enc_clip_max[_layer_id * 12 + 6] /
(_enc_clip_max[_layer_id * 12 + 10] * _quant_range),
_int8_ffn_in_buf, _int8_p_d_enc_wei[_layer_id * 4 + 2], _cublas_lt_handle,
_stream, _sm_gt_eq_80);
if (_sm_gt_eq_80) {
cublaslt_gemm(_int8_p_d_enc_wei[_layer_id * 4 + 2], _int8_ffn_in_buf,
_int8_ffn_out_buf, 1, _tw._inner_size, _batch_token_num,
_tw._hidden_size, 0, 0, 0,
_enc_clip_max[_layer_id * 12 + 2] *
_enc_clip_max[_layer_id * 12 + 6] /
(_enc_clip_max[_layer_id * 12 + 10] * _quant_range),
_cublas_lt_handle, _stream, _algo_map);
} else {
cublasLtMM_withAlgo_i8IO(
_int8_ffn_out_buf, 1, _batch_token_num, _tw._inner_size,
_tw._hidden_size, 0, 0, 0,
_enc_clip_max[_layer_id * 12 + 2] * _enc_clip_max[_layer_id * 12 + 6] /
(_enc_clip_max[_layer_id * 12 + 10] * _quant_range),
_int8_ffn_in_buf, _int8_p_d_enc_wei[_layer_id * 4 + 2],
_cublas_lt_handle, _stream, _sm_gt_eq_80);
}

#ifdef DEBUG_RESULT
print_vec(_int8_ffn_in_buf, "ffn1 in", 20);
Expand All @@ -655,7 +688,7 @@ void QuantGptEncoder<OpType_>::ffn_add_norm() {
_batch_token_num, _stream, _int8_ffn_out_buf, _int8_ffn_in_buf,
_p_device_wei[_weight_offset + 9], _tw._inner_size,
_enc_clip_max[_layer_id * 12 + 10] / _quant_range,
_quant_range / _enc_clip_max[_layer_id * 12 + 7], true, false);
_quant_range / _enc_clip_max[_layer_id * 12 + 7], !_sm_gt_eq_80, false);

/* ---step 2. second ffn layer--- */
cublaslt_gemm(_int8_p_d_enc_wei[_layer_id * 4 + 3], _int8_ffn_in_buf,
Expand All @@ -670,6 +703,7 @@ void QuantGptEncoder<OpType_>::ffn_add_norm() {

const _DataType *scale_ptr, *bias_ptr, *res_bias_ptr;
float clip_max, dequant_scale;
bool use_col32;
dequant_scale = _enc_clip_max[_layer_id * 12 + 3] *
_enc_clip_max[_layer_id * 12 + 7] /
(_quant_range * _quant_range);
Expand All @@ -678,39 +712,51 @@ void QuantGptEncoder<OpType_>::ffn_add_norm() {
bias_ptr = _p_device_emb[3];
res_bias_ptr = nullptr;
clip_max = _output_ln_clip_max;
use_col32 = true;
} else {
scale_ptr = _p_device_wei[(_layer_id + 1) * _tw._weight_per_enc_layer];
bias_ptr = _p_device_wei[(_layer_id + 1) * _tw._weight_per_enc_layer + 1];
res_bias_ptr =
_p_device_wei[(_layer_id + 1) * _tw._weight_per_enc_layer + 5];
clip_max = _enc_clip_max[(_layer_id + 1) * 12 + 4];
use_col32 = !_sm_gt_eq_80;
}

ker_residual_bias_ln_i32I_i8O_launcher<_DataType>(
_int32_ffn_out_buf, scale_ptr, bias_ptr, res_bias_ptr, _int8_ffn_in_buf,
_p_d_query, _batch_token_num, _tw._hidden_size, dequant_scale,
_quant_range / clip_max, _max_thread_per_block, _stream, false, false,
true, _scaled_ffn2_colsum[_layer_id]);
use_col32, _scaled_ffn2_colsum[_layer_id]);

return;
}

template <OperationType OpType_>
void QuantGptEncoder<OpType_>::ffn_add_norm_with_cache() {
/* ---step 1. first ffn layer--- */
cublasLtMM_withAlgo_i8IO(
_int8_ffn_out_buf, 1, _batch_size, _tw._inner_size, _tw._hidden_size, 0,
0, 0,
_enc_clip_max[_layer_id * 12 + 2] * _enc_clip_max[_layer_id * 12 + 6] /
(_enc_clip_max[_layer_id * 12 + 10] * _quant_range),
_int8_ffn_in_buf, _int8_p_d_enc_wei[_layer_id * 4 + 2], _cublas_lt_handle,
_stream, _sm_gt_eq_80);
if (_sm_gt_eq_80) {
cublaslt_gemm(_int8_p_d_enc_wei[_layer_id * 4 + 2], _int8_ffn_in_buf,
_int8_ffn_out_buf, 1, _tw._inner_size, _batch_size,
_tw._hidden_size, 0, 0, 0,
_enc_clip_max[_layer_id * 12 + 2] *
_enc_clip_max[_layer_id * 12 + 6] /
(_enc_clip_max[_layer_id * 12 + 10] * _quant_range),
_cublas_lt_handle, _stream, _algo_map);
} else {
cublasLtMM_withAlgo_i8IO(
_int8_ffn_out_buf, 1, _batch_size, _tw._inner_size, _tw._hidden_size, 0,
0, 0,
_enc_clip_max[_layer_id * 12 + 2] * _enc_clip_max[_layer_id * 12 + 6] /
(_enc_clip_max[_layer_id * 12 + 10] * _quant_range),
_int8_ffn_in_buf, _int8_p_d_enc_wei[_layer_id * 4 + 2],
_cublas_lt_handle, _stream, _sm_gt_eq_80);
}

ker_bias_gelu_i8I_i8O_launcher<_DataType>(
_batch_size, _stream, _int8_ffn_out_buf, _int8_ffn_in_buf,
_p_device_wei[_weight_offset + 9], _tw._inner_size,
_enc_clip_max[_layer_id * 12 + 10] / _quant_range,
_quant_range / _enc_clip_max[_layer_id * 12 + 7], true, false);
_quant_range / _enc_clip_max[_layer_id * 12 + 7], !_sm_gt_eq_80, false);

/* ---step 2. second ffn layer--- */
cublaslt_gemm(_int8_p_d_enc_wei[_layer_id * 4 + 3], _int8_ffn_in_buf,
Expand All @@ -719,6 +765,7 @@ void QuantGptEncoder<OpType_>::ffn_add_norm_with_cache() {

const _DataType *scale_ptr, *bias_ptr, *res_bias_ptr;
float clip_max, dequant_scale;
bool use_col32;
dequant_scale = _enc_clip_max[_layer_id * 12 + 3] *
_enc_clip_max[_layer_id * 12 + 7] /
(_quant_range * _quant_range);
Expand All @@ -727,19 +774,21 @@ void QuantGptEncoder<OpType_>::ffn_add_norm_with_cache() {
bias_ptr = _p_device_emb[3];
res_bias_ptr = nullptr;
clip_max = _output_ln_clip_max;
use_col32 = true;
} else {
scale_ptr = _p_device_wei[(_layer_id + 1) * _tw._weight_per_enc_layer];
bias_ptr = _p_device_wei[(_layer_id + 1) * _tw._weight_per_enc_layer + 1];
res_bias_ptr =
_p_device_wei[(_layer_id + 1) * _tw._weight_per_enc_layer + 5];
clip_max = _enc_clip_max[(_layer_id + 1) * 12 + 4];
use_col32 = !_sm_gt_eq_80;
}

ker_residual_bias_ln_i32I_i8O_launcher<_DataType>(
_int32_ffn_out_buf, scale_ptr, bias_ptr, res_bias_ptr, _int8_ffn_in_buf,
_p_d_query, _batch_size, _tw._hidden_size, dequant_scale,
_quant_range / clip_max, _max_thread_per_block, _stream, false, false,
true, _scaled_ffn2_colsum[_layer_id]);
use_col32, _scaled_ffn2_colsum[_layer_id]);

return;
}
Expand Down
Loading

0 comments on commit b665742

Please sign in to comment.