Evaluation framework for testing segmentation networks in Keras and PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!
It tries to show pros & cons of many existing segmentation networks implemented in Keras and PyTorch for different applications (biomed, sattelite, autonomous driving, etc). Briefly, it does the following:
for model in [Unet, Tiramisu, DenseNet, ...]:
for dataset in [COCO, LUNA, STARE, ...]:
for optimizer in [SGD, Adam]:
history = train(model, dataset, optimizer)
results.append(history)
summarize(results)
- Write Keras train pipeline
- Write Pytorch train pipeline
- Add ZF_UNET model (https://github.com/ZFTurbo/ZF_UNET_224_Pretrained_Model)
- Add LinkNet model
- Add Tiramisu model (https://github.com/0bserver07/One-Hundred-Layers-Tiramisu)
- Add SegCaps model
- Add VGG11,VGG16,AlbuNet models (https://github.com/ternaus/TernausNet)
- Add FCDenseNet model (https://github.com/bfortuner/pytorch_tiramisu)
- Add DSB2018 (stage1) dataset
- Add COCO dataset
- Add STARE dataset
- Add LUNA16 dataset
- Add Inria dataset
- Add Cityscapes dataset
- Add PASCAL VOC2012 dataset
- Add fancy plots
- https://github.com/ZFTurbo/ZF_UNET_224_Pretrained_Model
- https://github.com/ternaus/TernausNet
- https://github.com/0bserver07/One-Hundred-Layers-Tiramisu
- https://github.com/bfortuner/pytorch_tiramisu
- https://raw.githubusercontent.com/ZijunDeng/pytorch-semantic-segmentation
- https://github.com/mapillary/inplace_abn