The llama
CLI tool helps you setup and use the Llama Stack & agentic systems. It should be available on your path after installing the llama-stack
package.
download
:llama
cli tools supports downloading the model from Meta or Hugging Face.model
: Lists available models and their properties.stack
: Allows you to build and run a Llama Stack server. You can read more about this here.
llama --help
usage: llama [-h] {download,model,stack} ... Welcome to the Llama CLI options: -h, --help show this help message and exit subcommands: {download,model,stack}
You first need to have models downloaded locally.
To download any model you need the Model Descriptor. This can be obtained by running the command
llama model list
You should see a table like this:
+----------------------------------+------------------------------------------+----------------+ | Model Descriptor | Hugging Face Repo | Context Length | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-8B | meta-llama/Llama-3.1-8B | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-70B | meta-llama/Llama-3.1-70B | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-405B:bf16-mp8 | meta-llama/Llama-3.1-405B | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-405B | meta-llama/Llama-3.1-405B-FP8 | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-405B:bf16-mp16 | meta-llama/Llama-3.1-405B | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-8B-Instruct | meta-llama/Llama-3.1-8B-Instruct | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-70B-Instruct | meta-llama/Llama-3.1-70B-Instruct | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-405B-Instruct:bf16-mp8 | meta-llama/Llama-3.1-405B-Instruct | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-405B-Instruct | meta-llama/Llama-3.1-405B-Instruct-FP8 | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-405B-Instruct:bf16-mp16 | meta-llama/Llama-3.1-405B-Instruct | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.2-1B | meta-llama/Llama-3.2-1B | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.2-3B | meta-llama/Llama-3.2-3B | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.2-11B-Vision | meta-llama/Llama-3.2-11B-Vision | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.2-90B-Vision | meta-llama/Llama-3.2-90B-Vision | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.2-1B-Instruct | meta-llama/Llama-3.2-1B-Instruct | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.2-3B-Instruct | meta-llama/Llama-3.2-3B-Instruct | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.2-11B-Vision-Instruct | meta-llama/Llama-3.2-11B-Vision-Instruct | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.2-90B-Vision-Instruct | meta-llama/Llama-3.2-90B-Vision-Instruct | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama-Guard-3-11B-Vision | meta-llama/Llama-Guard-3-11B-Vision | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama-Guard-3-1B:int4-mp1 | meta-llama/Llama-Guard-3-1B-INT4 | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama-Guard-3-1B | meta-llama/Llama-Guard-3-1B | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama-Guard-3-8B | meta-llama/Llama-Guard-3-8B | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama-Guard-3-8B:int8-mp1 | meta-llama/Llama-Guard-3-8B-INT8 | 128K | +----------------------------------+------------------------------------------+----------------+ | Prompt-Guard-86M | meta-llama/Prompt-Guard-86M | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama-Guard-2-8B | meta-llama/Llama-Guard-2-8B | 4K | +----------------------------------+------------------------------------------+----------------+
To download models, you can use the llama download command.
Downloading from Meta
Here is an example download command to get the 3B-Instruct/11B-Vision-Instruct model. You will need META_URL which can be obtained from here
Download the required checkpoints using the following commands:
# download the 8B model, this can be run on a single GPU
llama download --source meta --model-id Llama3.2-3B-Instruct --meta-url META_URL
# you can also get the 70B model, this will require 8 GPUs however
llama download --source meta --model-id Llama3.2-11B-Vision-Instruct --meta-url META_URL
# llama-agents have safety enabled by default. For this, you will need
# safety models -- Llama-Guard and Prompt-Guard
llama download --source meta --model-id Prompt-Guard-86M --meta-url META_URL
llama download --source meta --model-id Llama-Guard-3-1B --meta-url META_URL
Downloading from Hugging Face
Essentially, the same commands above work, just replace --source meta
with --source huggingface
.
llama download --source huggingface --model-id Llama3.1-8B-Instruct --hf-token <HF_TOKEN>
llama download --source huggingface --model-id Llama3.1-70B-Instruct --hf-token <HF_TOKEN>
llama download --source huggingface --model-id Llama-Guard-3-1B --ignore-patterns *original*
llama download --source huggingface --model-id Prompt-Guard-86M --ignore-patterns *original*
Important: Set your environment variable HF_TOKEN
or pass in --hf-token
to the command to validate your access. You can find your token at https://huggingface.co/settings/tokens.
Tip: Default for
llama download
is to run with--ignore-patterns *.safetensors
since we use the.pth
files in theoriginal
folder. For Llama Guard and Prompt Guard, however, we need safetensors. Hence, please run with--ignore-patterns original
so that safetensors are downloaded and.pth
files are ignored.
If you're already using ollama, we also have a supported Llama Stack distribution local-ollama
and you can continue to use ollama for managing model downloads.
ollama pull llama3.1:8b-instruct-fp16
ollama pull llama3.1:70b-instruct-fp16
Note
Only the above two models are currently supported by Ollama.
The llama model
command helps you explore the model’s interface.
download
: Download the model from different sources. (meta, huggingface)list
: Lists all the models available for download with hardware requirements to deploy the models.prompt-format
: Show llama model message formats.describe
: Describes all the properties of the model.
llama model <subcommand> <options>
llama model --help
usage: llama model [-h] {download,list,prompt-format,describe} ... Work with llama models options: -h, --help show this help message and exit model_subcommands: {download,list,prompt-format,describe}
You can use the describe command to know more about a model:
llama model describe -m Llama3.2-3B-Instruct
+-----------------------------+----------------------------------+ | Model | Llama3.2-3B-Instruct | +-----------------------------+----------------------------------+ | Hugging Face ID | meta-llama/Llama-3.2-3B-Instruct | +-----------------------------+----------------------------------+ | Description | Llama 3.2 3b instruct model | +-----------------------------+----------------------------------+ | Context Length | 128K tokens | +-----------------------------+----------------------------------+ | Weights format | bf16 | +-----------------------------+----------------------------------+ | Model params.json | { | | | "dim": 3072, | | | "n_layers": 28, | | | "n_heads": 24, | | | "n_kv_heads": 8, | | | "vocab_size": 128256, | | | "ffn_dim_multiplier": 1.0, | | | "multiple_of": 256, | | | "norm_eps": 1e-05, | | | "rope_theta": 500000.0, | | | "use_scaled_rope": true | | | } | +-----------------------------+----------------------------------+ | Recommended sampling params | { | | | "strategy": "top_p", | | | "temperature": 1.0, | | | "top_p": 0.9, | | | "top_k": 0 | | | } | +-----------------------------+----------------------------------+
You can even run llama model prompt-format
see all of the templates and their tokens:
llama model prompt-format -m Llama3.2-3B-Instruct
You will be shown a Markdown formatted description of the model interface and how prompts / messages are formatted for various scenarios.
NOTE: Outputs in terminal are color printed to show special tokens.
- Please see our Getting Started guide for more details on how to build and start a Llama Stack distribution.
In the following steps, imagine we'll be working with a Llama3.1-8B-Instruct
model. We will name our build 8b-instruct
to help us remember the config. We will start build our distribution (in the form of a Conda environment, or Docker image). In this step, we will specify:
name
: the name for our distribution (e.g.8b-instruct
)image_type
: our build image type (conda | docker
)distribution_spec
: our distribution specs for specifying API providersdescription
: a short description of the configurations for the distributionproviders
: specifies the underlying implementation for serving each API endpointimage_type
:conda
|docker
to specify whether to build the distribution in the form of Docker image or Conda environment.
At the end of build command, we will generate <name>-build.yaml
file storing the build configurations.
After this step is complete, a file named <name>-build.yaml
will be generated and saved at the output file path specified at the end of the command.
- For a new user, we could start off with running
llama stack build
which will allow you to a interactively enter wizard where you will be prompted to enter build configurations.
llama stack build
Running the command above will allow you to fill in the configuration to build your Llama Stack distribution, you will see the following outputs.
> Enter an unique name for identifying your Llama Stack build distribution (e.g. my-local-stack): my-local-llama-stack
> Enter the image type you want your distribution to be built with (docker or conda): conda
Llama Stack is composed of several APIs working together. Let's configure the providers (implementations) you want to use for these APIs.
> Enter the API provider for the inference API: (default=meta-reference): meta-reference
> Enter the API provider for the safety API: (default=meta-reference): meta-reference
> Enter the API provider for the agents API: (default=meta-reference): meta-reference
> Enter the API provider for the memory API: (default=meta-reference): meta-reference
> Enter the API provider for the telemetry API: (default=meta-reference): meta-reference
> (Optional) Enter a short description for your Llama Stack distribution:
Build spec configuration saved at ~/.conda/envs/llamastack-my-local-llama-stack/my-local-llama-stack-build.yaml
- To build from alternative API providers, we provide distribution templates for users to get started building a distribution backed by different providers.
The following command will allow you to see the available templates and their corresponding providers.
llama stack build --list-templates
You may then pick a template to build your distribution with providers fitted to your liking.
llama stack build --template local-tgi --name my-tgi-stack
$ llama stack build --template local-tgi --name my-tgi-stack
...
...
Build spec configuration saved at ~/.conda/envs/llamastack-my-tgi-stack/my-tgi-stack-build.yaml
You may now run `llama stack configure my-tgi-stack` or `llama stack configure ~/.conda/envs/llamastack-my-tgi-stack/my-tgi-stack-build.yaml`
-
In addition to templates, you may customize the build to your liking through editing config files and build from config files with the following command.
-
The config file will be of contents like the ones in
llama_stack/distributions/templates/
.
$ cat llama_stack/distribution/templates/local-ollama-build.yaml
name: local-ollama
distribution_spec:
description: Like local, but use ollama for running LLM inference
providers:
inference: remote::ollama
memory: meta-reference
safety: meta-reference
agents: meta-reference
telemetry: meta-reference
image_type: conda
llama stack build --config llama_stack/distribution/templates/local-ollama-build.yaml
To build a docker image, you may start off from a template and use the --image-type docker
flag to specify docker
as the build image type.
llama stack build --template local --image-type docker --name docker-0
Alternatively, you may use a config file and set image_type
to docker
in our <name>-build.yaml
file, and run llama stack build <name>-build.yaml
. The <name>-build.yaml
will be of contents like:
name: local-docker-example
distribution_spec:
description: Use code from `llama_stack` itself to serve all llama stack APIs
docker_image: null
providers:
inference: meta-reference
memory: meta-reference-faiss
safety: meta-reference
agentic_system: meta-reference
telemetry: console
image_type: docker
The following command allows you to build a Docker image with the name <name>
llama stack build --config <name>-build.yaml
Dockerfile created successfully in /tmp/tmp.I0ifS2c46A/DockerfileFROM python:3.10-slim
WORKDIR /app
...
...
You can run it with: podman run -p 8000:8000 llamastack-docker-local
Build spec configuration saved at ~/.llama/distributions/docker/docker-local-build.yaml
After our distribution is built (either in form of docker or conda environment), we will run the following command to
llama stack configure [ <name> | <docker-image-name> | <path/to/name.build.yaml>]
- For
conda
environments: <path/to/name.build.yaml> would be the generated build spec saved from Step 1. - For
docker
images downloaded from Dockerhub, you could also use as the argument.- Run
docker images
to check list of available images on your machine.
- Run
$ llama stack configure ~/.llama/distributions/conda/8b-instruct-build.yaml
Configuring API: inference (meta-reference)
Enter value for model (existing: Llama3.1-8B-Instruct) (required):
Enter value for quantization (optional):
Enter value for torch_seed (optional):
Enter value for max_seq_len (existing: 4096) (required):
Enter value for max_batch_size (existing: 1) (required):
Configuring API: memory (meta-reference-faiss)
Configuring API: safety (meta-reference)
Do you want to configure llama_guard_shield? (y/n): y
Entering sub-configuration for llama_guard_shield:
Enter value for model (default: Llama-Guard-3-1B) (required):
Enter value for excluded_categories (default: []) (required):
Enter value for disable_input_check (default: False) (required):
Enter value for disable_output_check (default: False) (required):
Do you want to configure prompt_guard_shield? (y/n): y
Entering sub-configuration for prompt_guard_shield:
Enter value for model (default: Prompt-Guard-86M) (required):
Configuring API: agentic_system (meta-reference)
Enter value for brave_search_api_key (optional):
Enter value for bing_search_api_key (optional):
Enter value for wolfram_api_key (optional):
Configuring API: telemetry (console)
YAML configuration has been written to ~/.llama/builds/conda/8b-instruct-run.yaml
After this step is successful, you should be able to find a run configuration spec in ~/.llama/builds/conda/8b-instruct-run.yaml
with the following contents. You may edit this file to change the settings.
As you can see, we did basic configuration above and configured:
- inference to run on model
Llama3.1-8B-Instruct
(obtained fromllama model list
) - Llama Guard safety shield with model
Llama-Guard-3-1B
- Prompt Guard safety shield with model
Prompt-Guard-86M
For how these configurations are stored as yaml, checkout the file printed at the end of the configuration.
Note that all configurations as well as models are stored in ~/.llama
Now, let's start the Llama Stack Distribution Server. You will need the YAML configuration file which was written out at the end by the llama stack configure
step.
llama stack run ~/.llama/builds/conda/8b-instruct-run.yaml
You should see the Llama Stack server start and print the APIs that it is supporting
$ llama stack run ~/.llama/builds/local/conda/8b-instruct.yaml
> initializing model parallel with size 1
> initializing ddp with size 1
> initializing pipeline with size 1
Loaded in 19.28 seconds
NCCL version 2.20.5+cuda12.4
Finished model load YES READY
Serving POST /inference/batch_chat_completion
Serving POST /inference/batch_completion
Serving POST /inference/chat_completion
Serving POST /inference/completion
Serving POST /safety/run_shield
Serving POST /agentic_system/memory_bank/attach
Serving POST /agentic_system/create
Serving POST /agentic_system/session/create
Serving POST /agentic_system/turn/create
Serving POST /agentic_system/delete
Serving POST /agentic_system/session/delete
Serving POST /agentic_system/memory_bank/detach
Serving POST /agentic_system/session/get
Serving POST /agentic_system/step/get
Serving POST /agentic_system/turn/get
Listening on :::5000
INFO: Started server process [453333]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
Note
Configuration is in ~/.llama/builds/local/conda/8b-instruct-run.yaml
. Feel free to increase max_seq_len
.
Important
The "local" distribution inference server currently only supports CUDA. It will not work on Apple Silicon machines.
Tip
You might need to use the flag --disable-ipv6
to Disable IPv6 support
This server is running a Llama model locally.
Once the server is setup, we can test it with a client to see the example outputs.
cd /path/to/llama-stack
conda activate <env> # any environment containing the llama-stack pip package will work
python -m llama_stack.apis.inference.client localhost 5000
This will run the chat completion client and query the distribution’s /inference/chat_completion API.
Here is an example output:
User>hello world, write me a 2 sentence poem about the moon
Assistant> Here's a 2-sentence poem about the moon:
The moon glows softly in the midnight sky,
A beacon of wonder, as it passes by.
Similarly you can test safety (if you configured llama-guard and/or prompt-guard shields) by:
python -m llama_stack.apis.safety.client localhost 5000
You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.