Skip to content

btsantos/opencv-haar-classifier-training

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Train your own OpenCV Haar classifier

This repository aims to provide tools and information on training your own OpenCV Haar classifier. Use it in conjunction with this blog post: Train your own OpenCV Haar classifier.

Instructions

  1. Install OpenCV & get OpenCV source

     brew tap homebrew/science
     brew install --with-tbb opencv
     wget http://downloads.sourceforge.net/project/opencvlibrary/opencv-unix/2.4.9/opencv-2.4.9.zip
     unzip opencv-2.4.9.zip
    
  2. Clone this repository

     git clone https://github.com/mrnugget/opencv-haar-classifier-training
    
  3. Put your positive images in the ./positive_images folder and create a list of them:

     find ./positive_images -iname "*.jpg" > positives.txt
    
  4. Put the negative images in the ./negative_images folder and create a list of them:

     find ./negative_images -iname "*.jpg" > negatives.txt
    
  5. Create positive samples with the bin/createsamples.pl script and save them to the ./samples folder:

     perl bin/createsamples.pl positives.txt negatives.txt samples 1500\
       "opencv_createsamples -bgcolor 0 -bgthresh 0 -maxxangle 1.1\
       -maxyangle 1.1 maxzangle 0.5 -maxidev 40 -w 80 -h 40"
    
  6. Compile the mergevec.cpp file in the ./src directory:

     cp src/mergevec.cpp ~/opencv-2.4.9/apps/haartraining
     cd ~/opencv-2.4.9/apps/haartraining
     g++ `pkg-config --libs --cflags opencv | sed 's/libtbb\.dylib/tbb/'`\
       -I. -o mergevec mergevec.cpp\
       cvboost.cpp cvcommon.cpp cvsamples.cpp cvhaarclassifier.cpp\
       cvhaartraining.cpp\
       -lopencv_core -lopencv_calib3d -lopencv_imgproc -lopencv_highgui -lopencv_objdetect
    
  7. Use the compiled executable mergevec to merge the samples in ./samples into one file:

     find ./samples -name '*.vec' > samples.txt
     ./mergevec samples.txt samples.vec
    
  8. Start training the classifier with opencv_traincascade, which comes with OpenCV, and save the results to ./classifier:

     opencv_traincascade -data classifier -vec samples.vec -bg negatives.txt\
       -numStages 20 -minHitRate 0.999 -maxFalseAlarmRate 0.5 -numPos 1000\
       -numNeg 600 -w 80 -h 40 -mode ALL -precalcValBufSize 1024\
       -precalcIdxBufSize 1024
    
  9. Wait until the process is finished (which takes a long time — a couple of days probably, depending on the computer you have and how big your images are).

  10. Use your finished classifier!

    cd ~/opencv-2.4.9/samples/c
    chmod +x build_all.sh
    ./build_all.sh
    ./facedetect --cascade="~/finished_classifier.xml"
    

Acknowledgements

A huge thanks goes to Naotoshi Seo, who wrote the mergevec.cpp and createsamples.cpp tools and released them under the MIT licencse. His notes on OpenCV Haar training were a huge help. Thank you, Naotoshi!

References & Links:

About

Learn how to train your own OpenCV Haar classifier

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published