Skip to content
/ deeprm Public
forked from hongzimao/deeprm

Resource Management with Deep Reinforcement Learning (HotNets '16)

Notifications You must be signed in to change notification settings

brvyss/deeprm

This branch is 1 commit behind hongzimao/deeprm:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

b42eff0 · Nov 29, 2016

History

1 Commit
Nov 29, 2016
Nov 29, 2016
Nov 29, 2016
Nov 29, 2016
Nov 29, 2016
Nov 29, 2016
Nov 29, 2016
Nov 29, 2016
Nov 29, 2016
Nov 29, 2016
Nov 29, 2016
Nov 29, 2016

Repository files navigation

DeepRM

HotNets'16 http://people.csail.mit.edu/hongzi/content/publications/DeepRM-HotNets16.pdf

Install prerequisites

sudo apt-get update
sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose g++ libopenblas-dev git
pip install --user Theano
pip install --user Lasagne==0.1
sudo apt-get install python-matplotlib

In folder RL, create a data/ folder.

Use launcher.py to launch experiments.

--exp_type <type of experiment> 
--num_res <number of resources> 
--num_nw <number of visible new work> 
--simu_len <simulation length> 
--num_ex <number of examples> 
--num_seq_per_batch <rough number of samples in one batch update> 
--eps_max_len <episode maximum length (terminated at the end)>
--num_epochs <number of epoch to do the training>
--time_horizon <time step into future, screen height> 
--res_slot <total number of resource slots, screen width> 
--max_job_len <maximum new job length> 
--max_job_size <maximum new job resource request> 
--new_job_rate <new job arrival rate> 
--dist <discount factor> 
--lr_rate <learning rate> 
--ba_size <batch size> 
--pg_re <parameter file for pg network> 
--v_re <parameter file for v network> 
--q_re <parameter file for q network> 
--out_freq <network output frequency> 
--ofile <output file name> 
--log <log file name> 
--render <plot dynamics> 
--unseen <generate unseen example> 

The default variables are defined in parameters.py.

Example:

  • launch supervised learning for policy estimation
python launcher.py --exp_type=pg_su --simu_len=50 --num_ex=1000 --ofile=data/pg_su --out_freq=10 
  • launch policy gradient using network parameter just obtained
python launcher.py --exp_type=pg_re --pg_re=data/pg_su_net_file_20.pkl --simu_len=50 --num_ex=10 --ofile=data/pg_re
  • launch testing and comparing experiemnt on unseen examples with pg agent just trained
python launcher.py --exp_type=test --simu_len=50 --num_ex=10 --pg_re=data/pg_re_1600.pkl --unseen=True

About

Resource Management with Deep Reinforcement Learning (HotNets '16)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%