Skip to content

Commit

Permalink
Merge pull request #40 from brown-ccv/feature-dev-depends
Browse files Browse the repository at this point in the history
Adding Black as dev dependency
  • Loading branch information
kmilo9999 authored Nov 16, 2023
2 parents 8d25bbe + cb895ad commit d10ac18
Show file tree
Hide file tree
Showing 2 changed files with 135 additions and 102 deletions.
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,7 @@ dependencies = [ # Optional
# Similar to `dependencies` above, these must be valid existing
# projects.
[project.optional-dependencies] # Optional
dev = ["check-manifest"]
dev = ["check-manifest","black","icesat2-tracks[test]"]
test = ["coverage"]

# List URLs that are relevant to your project
Expand Down
235 changes: 134 additions & 101 deletions src/icesat2_tracks/analysis_db/B01_SL_load_single_file.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,16 @@

#
"""
This file open a ICEsat2 tbeam_stats.pyrack applied filters and corections and returns smoothed photon heights on a regular grid in an .nc file.
This is python 3.11
"""
import os, sys
from icesat2_tracks.config.IceSAT2_startup import mconfig,xr,color_schemes,font_for_pres,plt
from icesat2_tracks.config.IceSAT2_startup import (
mconfig,
xr,
color_schemes,
font_for_pres,
plt,
)

import geopandas as gpd

Expand All @@ -25,75 +30,83 @@
import datetime


xr.set_options(display_style='text')
xr.set_options(display_style="text")


# Select region and retrive batch of tracks

track_name, batch_key, ID_flag = io.init_from_input(sys.argv) # loads standard experiment
track_name, batch_key, ID_flag = io.init_from_input(
sys.argv
) # loads standard experiment

#20190502052058_05180312_005_01
# 20190502052058_05180312_005_01
plot_flag = True
hemis = batch_key.split('_')[0]
hemis = batch_key.split("_")[0]


save_path = mconfig['paths']['work'] +'/'+batch_key+'/B01_regrid/'
save_path = mconfig["paths"]["work"] + "/" + batch_key + "/B01_regrid/"
MT.mkdirs_r(save_path)

save_path_json = mconfig['paths']['work'] +'/'+ batch_key +'/A01b_ID/'
save_path_json = mconfig["paths"]["work"] + "/" + batch_key + "/A01b_ID/"
MT.mkdirs_r(save_path_json)

ATL03_track_name = 'ATL03_'+track_name+'.h5'
ATL03_track_name = "ATL03_" + track_name + ".h5"

# Configure SL Session
# Configure SL Session
sliderule.authenticate("brown", ps_username="mhell", ps_password="Oijaeth9quuh")
icesat2.init("slideruleearth.io", organization="brown", desired_nodes=1, time_to_live=90) #minutes
icesat2.init(
"slideruleearth.io", organization="brown", desired_nodes=1, time_to_live=90
) # minutes


# plot the ground tracks in geographic location
# Generate ATL06-type segments using the ATL03-native photon classification
# Use the ocean classification for photons with a confidence parmeter to 2 or higher (low confidence or better)

params={'srt': 1, # Ocean classification
'len': 25, # 10-meter segments
'ats':3, # require that each segment contain photons separated by at least 5 m
'res':10, # return one photon every 10 m
'dist_in_seg': False, # if False units of len and res are in meters
'track': 0, # return all ground tracks
'pass_invalid': False,
'cnt': 20,
'sigma_r_max': 4, # maximum standard deviation of photon in extend
'cnf': 2, # require classification confidence of 2 or more
'atl03_geo_fields' : ['dem_h']
}
params = {
"srt": 1, # Ocean classification
"len": 25, # 10-meter segments
"ats": 3, # require that each segment contain photons separated by at least 5 m
"res": 10, # return one photon every 10 m
"dist_in_seg": False, # if False units of len and res are in meters
"track": 0, # return all ground tracks
"pass_invalid": False,
"cnt": 20,
"sigma_r_max": 4, # maximum standard deviation of photon in extend
"cnf": 2, # require classification confidence of 2 or more
"atl03_geo_fields": ["dem_h"],
}


# YAPC alternatibe
params_yapc={'srt': 1,
'len': 20,
'ats':3,
'res':10,
'dist_in_seg': False, # if False units of len and res are in meters
'track': 0,
'pass_invalid': False,
'cnf': 2,
'cnt': 20,
'sigma_r_max': 4, # maximum standard deviation of photon in extend
'maxi':10,
'yapc': dict(knn=0, win_h=6, win_x=11, min_ph=4, score=100), # use the YAPC photon classifier; these are the recommended parameters, but the results might be more specific with a smaller win_h value, or a higher score cutoff
# "yapc": dict(knn=0, win_h=3, win_x=11, min_ph=4, score=50), # use the YAPC photon classifier; these are the recommended parameters, but the results might be more specific with a smaller win_h value, or a higher score cutoff
'atl03_geo_fields' : ['dem_h']
}

maximum_height = 30 # (meters) maximum height past dem_h correction
params_yapc = {
"srt": 1,
"len": 20,
"ats": 3,
"res": 10,
"dist_in_seg": False, # if False units of len and res are in meters
"track": 0,
"pass_invalid": False,
"cnf": 2,
"cnt": 20,
"sigma_r_max": 4, # maximum standard deviation of photon in extend
"maxi": 10,
"yapc": dict(
knn=0, win_h=6, win_x=11, min_ph=4, score=100
), # use the YAPC photon classifier; these are the recommended parameters, but the results might be more specific with a smaller win_h value, or a higher score cutoff
# "yapc": dict(knn=0, win_h=3, win_x=11, min_ph=4, score=50), # use the YAPC photon classifier; these are the recommended parameters, but the results might be more specific with a smaller win_h value, or a higher score cutoff
"atl03_geo_fields": ["dem_h"],
}

maximum_height = 30 # (meters) maximum height past dem_h correction
print("STARTS")
gdf = icesat2.atl06p(params_yapc, resources=[ATL03_track_name])
print("ENDS")
gdf = sct.correct_and_remove_height(gdf, maximum_height)


cdict = dict()
for s,b in zip(gdf['spot'].unique(), ['gt1l', 'gt1r', 'gt2l', 'gt2r', 'gt3l', 'gt3r']):
for s, b in zip(gdf["spot"].unique(), ["gt1l", "gt1r", "gt2l", "gt2r", "gt3l", "gt3r"]):
cdict[s] = color_schemes.rels[b]


Expand All @@ -106,6 +119,7 @@

# main routine for defining the x coordinate and sacing table data


def make_B01_dict(table_data, split_by_beam=True, to_hdf5=False):
"""
converts a GeoDataFrame from Sliderule to GeoDataFrames for each beam witht the correct columns and names
Expand All @@ -118,112 +132,131 @@ def make_B01_dict(table_data, split_by_beam=True, to_hdf5=False):
else:
table_data: GeoDataFrame with the data for all beams in one table
"""

table_data.rename(columns= {
'n_fit_photons':'N_photos',
'w_surface_window_final':'signal_confidence',
'y_atc':'y',
'x_atc': 'distance',
}
, inplace=True)

table_data['lons'] = table_data['geometry'].x
table_data['lats'] = table_data['geometry'].y

drop_columns = ['cycle','gt','rgt', 'pflags']

table_data.rename(
columns={
"n_fit_photons": "N_photos",
"w_surface_window_final": "signal_confidence",
"y_atc": "y",
"x_atc": "distance",
},
inplace=True,
)

table_data["lons"] = table_data["geometry"].x
table_data["lats"] = table_data["geometry"].y

drop_columns = ["cycle", "gt", "rgt", "pflags"]
if to_hdf5:
drop_columns.append('geometry')
drop_columns.append("geometry")
table_data.drop(columns=drop_columns, inplace=True)

if split_by_beam:
B01b = dict()
# this is not tested
for spot,beam in zip([1,2,3, 4, 5, 6],['gt1l', 'gt1r', 'gt2l', 'gt2r', 'gt3l', 'gt3r']) :
ii = table_data.spot==spot
for spot, beam in zip(
[1, 2, 3, 4, 5, 6], ["gt1l", "gt1r", "gt2l", "gt2r", "gt3l", "gt3r"]
):
ii = table_data.spot == spot
B01b[beam] = table_data[ii]
return B01b
else:
return table_data


# define reference point and then define 'x'
table_data = copy.copy(gdf)
imp.reload(sct)
# the reference point is defined as the most equatorward point of the polygon.
# the reference point is defined as the most equatorward point of the polygon.
# It's distance from the equator is subtracted from the distance of each photon.
table_data = sct.define_x_coordinate_from_data(table_data)
table_time = table_data['time']
table_data.drop(columns=['time'], inplace=True)
table_time = table_data["time"]
table_data.drop(columns=["time"], inplace=True)

# renames columns and splits beams
Ti = make_B01_dict(table_data, split_by_beam=True, to_hdf5=True)
Ti = make_B01_dict(table_data, split_by_beam=True, to_hdf5=True)

for kk in Ti.keys():
Ti[kk]['dist'] = Ti[kk]['x'].copy()
Ti[kk]['heights_c_weighted_mean'] = Ti[kk]['h_mean'].copy()
Ti[kk]['heights_c_std'] = Ti[kk]['h_sigma'].copy()
Ti[kk]["dist"] = Ti[kk]["x"].copy()
Ti[kk]["heights_c_weighted_mean"] = Ti[kk]["h_mean"].copy()
Ti[kk]["heights_c_std"] = Ti[kk]["h_sigma"].copy()


segment = track_name.split('_')[1][-2:]
segment = track_name.split("_")[1][-2:]
ID_name = sct.create_ID_name(gdf.iloc[0], segment=segment)
print( ID_name )
io.write_track_to_HDF5(Ti, ID_name + '_B01_binned' , save_path) # regridding heights
print(ID_name)
io.write_track_to_HDF5(Ti, ID_name + "_B01_binned", save_path) # regridding heights

# plot the ground tracks in geographic location

all_beams = mconfig['beams']['all_beams']
high_beams = mconfig['beams']['high_beams']
low_beams = mconfig['beams']['low_beams']
all_beams = mconfig["beams"]["all_beams"]
high_beams = mconfig["beams"]["high_beams"]
low_beams = mconfig["beams"]["low_beams"]

D = beam_stats.derive_beam_statistics(Ti, all_beams, Lmeter=12.5e3, dx =10)
D = beam_stats.derive_beam_statistics(Ti, all_beams, Lmeter=12.5e3, dx=10)

# save figure from above:
plot_path = mconfig['paths']['plot'] + '/'+hemis+'/'+batch_key+'/' + ID_name +'/'
plot_path = (
mconfig["paths"]["plot"] + "/" + hemis + "/" + batch_key + "/" + ID_name + "/"
)
MT.mkdirs_r(plot_path)
F_atl06.save_light(path = plot_path , name = 'B01b_ATL06_corrected.png')
F_atl06.save_light(path=plot_path, name="B01b_ATL06_corrected.png")
plt.close()

imp.reload(beam_stats)
if plot_flag:

font_for_pres()
F = M.figure_axis_xy(8, 4.3, view_scale= 0.6 )
beam_stats.plot_beam_statistics(D, high_beams, low_beams, color_schemes.rels, track_name = track_name + '| ascending =' + str(sct.ascending_test_distance(gdf)) )

F.save_light(path = plot_path , name = 'B01b_beam_statistics.png')
F = M.figure_axis_xy(8, 4.3, view_scale=0.6)
beam_stats.plot_beam_statistics(
D,
high_beams,
low_beams,
color_schemes.rels,
track_name=track_name
+ "| ascending ="
+ str(sct.ascending_test_distance(gdf)),
)

F.save_light(path=plot_path, name="B01b_beam_statistics.png")
plt.close()

# plot the ground tracks in geographic location
gdf[::100].plot(markersize=0.1, figsize=(4,6))
plt.title(track_name + '\nascending =' + str(sct.ascending_test_distance(gdf)) , loc ='left')
M.save_anyfig(plt.gcf(), path = plot_path ,name = 'B01_track.png')
gdf[::100].plot(markersize=0.1, figsize=(4, 6))
plt.title(
track_name + "\nascending =" + str(sct.ascending_test_distance(gdf)), loc="left"
)
M.save_anyfig(plt.gcf(), path=plot_path, name="B01_track.png")
plt.close()



print('write A01b .json')
DD= {'case_ID': ID_name , 'tracks' : {} }
print("write A01b .json")
DD = {"case_ID": ID_name, "tracks": {}}

DD['tracks']['ATL03'] = 'ATL10-' +track_name
DD["tracks"]["ATL03"] = "ATL10-" + track_name


start_pos = abs(table_data.lats).argmin()
end_pos = abs(table_data.lats).argmax()



# add other pars:
DD['pars'] ={
'poleward': sct.ascending_test(gdf), 'region': '0',
'start': {'longitude': table_data.lons[start_pos], 'latitude': table_data.lats[start_pos]
, 'seg_dist_x': float(table_data.x[start_pos])
, 'delta_time': datetime.datetime.timestamp(table_time[start_pos])
},
'end': {'longitude': table_data.lons[end_pos], 'latitude': table_data.lats[end_pos]
, 'seg_dist_x': float(table_data.x[end_pos])
, 'delta_time': datetime.datetime.timestamp(table_time[end_pos])
},
}

MT.json_save2(name='A01b_ID_'+ID_name, path=save_path_json, data= DD)

print('done')
DD["pars"] = {
"poleward": sct.ascending_test(gdf),
"region": "0",
"start": {
"longitude": table_data.lons[start_pos],
"latitude": table_data.lats[start_pos],
"seg_dist_x": float(table_data.x[start_pos]),
"delta_time": datetime.datetime.timestamp(table_time[start_pos]),
},
"end": {
"longitude": table_data.lons[end_pos],
"latitude": table_data.lats[end_pos],
"seg_dist_x": float(table_data.x[end_pos]),
"delta_time": datetime.datetime.timestamp(table_time[end_pos]),
},
}

MT.json_save2(name="A01b_ID_" + ID_name, path=save_path_json, data=DD)

print("done")

0 comments on commit d10ac18

Please sign in to comment.