Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add simulations to reproduce figure 8 of Brunel (2000) #1388

Merged
merged 7 commits into from
Mar 1, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
154 changes: 154 additions & 0 deletions examples/frompapers/Brunel_2000.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
#!/usr/bin/env python3
"""
Fig. 8 from:

Brunel, N. Dynamics of Sparsely Connected Networks of Excitatory and
Inhibitory Spiking Neurons. J Comput Neurosci 8, 183–208
(2000). https://doi.org/10.1023/A:1008925309027

Inspired by http://neuronaldynamics.epfl.ch

Sebastian Schmitt, 2022
"""

import random
from brian2 import *
import matplotlib.pyplot as plt


def sim(g, nu_ext_over_nu_thr, sim_time, ax_spikes, ax_rates, rate_tick_step):
"""
g -- relative inhibitory to excitatory synaptic strength
nu_ext_over_nu_thr -- ratio of external stimulus rate to threshold rate
sim_time -- simulation time
ax_spikes -- matplotlib axes to plot spikes on
ax_rates -- matplotlib axes to plot rates on
rate_tick_step -- step size for rate axis ticks
"""

# network parameters
N_E = 10000
gamma = 0.25
N_I = round(gamma * N_E)
N = N_E + N_I
epsilon = 0.1
C_E = epsilon * N_E
C_ext = C_E

# neuron parameters
tau = 20 * ms
theta = 20 * mV
V_r = 10 * mV
tau_rp = 2 * ms

# synapse parameters
J = 0.1 * mV
D = 1.5 * ms

# external stimulus
nu_thr = theta / (J * C_E * tau)

defaultclock.dt = 0.1 * ms

neurons = NeuronGroup(N,
"""
dv/dt = -v/tau : volt (unless refractory)
""",
threshold="v > theta",
reset="v = V_r",
refractory=tau_rp,
method="exact",
)

excitatory_neurons = neurons[:N_E]
inhibitory_neurons = neurons[N_E:]

exc_synapses = Synapses(excitatory_neurons, target=neurons, on_pre="v += J", delay=D)
exc_synapses.connect(p=epsilon)

inhib_synapses = Synapses(inhibitory_neurons, target=neurons, on_pre="v += -g*J", delay=D)
inhib_synapses.connect(p=epsilon)

nu_ext = nu_ext_over_nu_thr * nu_thr

external_poisson_input = PoissonInput(
target=neurons, target_var="v", N=C_ext, rate=nu_ext, weight=J
)

rate_monitor = PopulationRateMonitor(neurons)

# record from the first 50 excitatory neurons
spike_monitor = SpikeMonitor(neurons[:50])

run(sim_time, report='text')

ax_spikes.plot(spike_monitor.t / ms, spike_monitor.i, "|")
ax_rates.plot(rate_monitor.t / ms, rate_monitor.rate / Hz)

ax_spikes.set_yticks([])

ax_spikes.set_xlim(*params["t_range"])
ax_rates.set_xlim(*params["t_range"])

ax_rates.set_ylim(*params["rate_range"])
ax_rates.set_xlabel("t [ms]")

ax_rates.set_yticks(
np.arange(
params["rate_range"][0], params["rate_range"][1] + rate_tick_step, rate_tick_step
)
)

plt.subplots_adjust(hspace=0)


parameters = {
"A": {
"g": 3,
"nu_ext_over_nu_thr": 2,
"t_range": [500, 600],
"rate_range": [0, 6000],
"rate_tick_step": 1000,
},
"B": {
"g": 6,
"nu_ext_over_nu_thr": 4,
"t_range": [1000, 1200],
"rate_range": [0, 400],
"rate_tick_step": 100,
},
"C": {
"g": 5,
"nu_ext_over_nu_thr": 2,
"t_range": [1000, 1200],
"rate_range": [0, 200],
"rate_tick_step": 50,
},
"D": {
"g": 4.5,
"nu_ext_over_nu_thr": 0.9,
"t_range": [1000, 1200],
"rate_range": [0, 250],
"rate_tick_step": 50,
},
}

for panel, params in parameters.items():

fig = plt.figure(figsize=(4, 5))
fig.suptitle(panel)

gs = fig.add_gridspec(ncols=1, nrows=2, height_ratios=[4, 1])

ax_spikes, ax_rates = gs.subplots(sharex="col")

sim(
params["g"],
params["nu_ext_over_nu_thr"],
params["t_range"][1] * ms,
ax_spikes,
ax_rates,
params["rate_tick_step"],
)

plt.show()