-
Notifications
You must be signed in to change notification settings - Fork 94
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
fe90dde
commit 7369dd9
Showing
1 changed file
with
249 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,249 @@ | ||
import brainpy as bp | ||
import brainpy.math as bm | ||
|
||
|
||
def model1(): | ||
class EINet(bp.DynSysGroup): | ||
def __init__(self): | ||
super().__init__() | ||
self.N = bp.dyn.LifRefLTC(4000, V_rest=-60., V_th=-50., V_reset=-60., tau=20., tau_ref=5., | ||
V_initializer=bp.init.Normal(-55., 2.)) | ||
self.delay = bp.VarDelay(self.N.spike, entries={'I': None}) | ||
self.E = bp.dyn.ProjAlignPost1(comm=bp.dnn.EventJitFPHomoLinear(3200, 4000, prob=0.02, weight=0.6), | ||
syn=bp.dyn.Expon(size=4000, tau=5.), | ||
out=bp.dyn.COBA(E=0.), | ||
post=self.N) | ||
self.I = bp.dyn.ProjAlignPost1(comm=bp.dnn.EventJitFPHomoLinear(800, 4000, prob=0.02, weight=6.7), | ||
syn=bp.dyn.Expon(size=4000, tau=10.), | ||
out=bp.dyn.COBA(E=-80.), | ||
post=self.N) | ||
|
||
def update(self, input): | ||
spk = self.delay.at('I') | ||
self.E(spk[:3200]) | ||
self.I(spk[3200:]) | ||
self.delay(self.N(input)) | ||
return self.N.spike.value | ||
|
||
model = EINet() | ||
indices = bm.arange(1000) | ||
spks = bm.for_loop(lambda i: model.step_run(i, 20.), indices) | ||
bp.visualize.raster_plot(indices, spks, show=True) | ||
|
||
|
||
def model2(): | ||
class EINet(bp.DynSysGroup): | ||
def __init__(self): | ||
super().__init__() | ||
ne, ni = 3200, 800 | ||
self.E = bp.dyn.LifRefLTC(ne, V_rest=-60., V_th=-50., V_reset=-60., tau=20., tau_ref=5., | ||
V_initializer=bp.init.Normal(-55., 2.)) | ||
self.I = bp.dyn.LifRefLTC(ni, V_rest=-60., V_th=-50., V_reset=-60., tau=20., tau_ref=5., | ||
V_initializer=bp.init.Normal(-55., 2.)) | ||
self.E2E = bp.dyn.ProjAlignPost2(pre=self.E, | ||
delay=0.1, | ||
comm=bp.dnn.EventJitFPHomoLinear(ne, ne, prob=0.02, weight=0.6), | ||
syn=bp.dyn.Expon(size=ne, tau=5.), | ||
out=bp.dyn.COBA(E=0.), | ||
post=self.E) | ||
self.E2I = bp.dyn.ProjAlignPost2(pre=self.E, | ||
delay=0.1, | ||
comm=bp.dnn.EventJitFPHomoLinear(ne, ni, prob=0.02, weight=0.6), | ||
syn=bp.dyn.Expon(size=ni, tau=5.), | ||
out=bp.dyn.COBA(E=0.), | ||
post=self.I) | ||
self.I2E = bp.dyn.ProjAlignPost2(pre=self.I, | ||
delay=0.1, | ||
comm=bp.dnn.EventJitFPHomoLinear(ni, ne, prob=0.02, weight=6.7), | ||
syn=bp.dyn.Expon(size=ne, tau=10.), | ||
out=bp.dyn.COBA(E=-80.), | ||
post=self.E) | ||
self.I2I = bp.dyn.ProjAlignPost2(pre=self.I, | ||
delay=0.1, | ||
comm=bp.dnn.EventJitFPHomoLinear(ni, ni, prob=0.02, weight=6.7), | ||
syn=bp.dyn.Expon(size=ni, tau=10.), | ||
out=bp.dyn.COBA(E=-80.), | ||
post=self.I) | ||
|
||
def update(self, inp): | ||
self.E2E() | ||
self.E2I() | ||
self.I2E() | ||
self.I2I() | ||
self.E(inp) | ||
self.I(inp) | ||
return self.E.spike | ||
|
||
model = EINet() | ||
indices = bm.arange(1000) | ||
spks = bm.for_loop(lambda i: model.step_run(i, 20.), indices) | ||
bp.visualize.raster_plot(indices, spks, show=True) | ||
|
||
|
||
def model3(): | ||
class EINet(bp.DynSysGroup): | ||
def __init__(self): | ||
super().__init__() | ||
self.N = bp.dyn.LifRefLTC(4000, V_rest=-60., V_th=-50., V_reset=-60., tau=20., tau_ref=5., | ||
V_initializer=bp.init.Normal(-55., 2.)) | ||
self.delay = bp.VarDelay(self.N.spike, entries={'I': None}) | ||
self.syn1 = bp.dyn.Expon(size=3200, tau=5.) | ||
self.syn2 = bp.dyn.Expon(size=800, tau=10.) | ||
self.E = bp.dyn.VanillaProj(comm=bp.dnn.JitFPHomoLinear(3200, 4000, prob=0.02, weight=0.6), | ||
out=bp.dyn.COBA(E=0.), | ||
post=self.N) | ||
self.I = bp.dyn.VanillaProj(comm=bp.dnn.JitFPHomoLinear(800, 4000, prob=0.02, weight=6.7), | ||
out=bp.dyn.COBA(E=-80.), | ||
post=self.N) | ||
|
||
def update(self, input): | ||
spk = self.delay.at('I') | ||
self.E(self.syn1(spk[:3200])) | ||
self.I(self.syn2(spk[3200:])) | ||
self.delay(self.N(input)) | ||
return self.N.spike.value | ||
|
||
model = EINet() | ||
indices = bm.arange(1000) | ||
spks = bm.for_loop(lambda i: model.step_run(i, 20.), indices) | ||
bp.visualize.raster_plot(indices, spks, show=True) | ||
|
||
|
||
def model4(): | ||
class EINet(bp.DynSysGroup): | ||
def __init__(self): | ||
super().__init__() | ||
ne, ni = 3200, 800 | ||
self.E = bp.dyn.LifRefLTC(ne, V_rest=-60., V_th=-50., V_reset=-60., tau=20., tau_ref=5., | ||
V_initializer=bp.init.Normal(-55., 2.)) | ||
self.I = bp.dyn.LifRefLTC(ni, V_rest=-60., V_th=-50., V_reset=-60., tau=20., tau_ref=5., | ||
V_initializer=bp.init.Normal(-55., 2.)) | ||
self.E2E = bp.dyn.ProjAlignPreMg1(pre=self.E, | ||
syn=bp.dyn.Expon.desc(size=ne, tau=5.), | ||
delay=0.1, | ||
comm=bp.dnn.JitFPHomoLinear(ne, ne, prob=0.02, weight=0.6), | ||
out=bp.dyn.COBA(E=0.), | ||
post=self.E) | ||
self.E2I = bp.dyn.ProjAlignPreMg1(pre=self.E, | ||
syn=bp.dyn.Expon.desc(size=ne, tau=5.), | ||
delay=0.1, | ||
comm=bp.dnn.JitFPHomoLinear(ne, ni, prob=0.02, weight=0.6), | ||
out=bp.dyn.COBA(E=0.), | ||
post=self.I) | ||
self.I2E = bp.dyn.ProjAlignPreMg1(pre=self.I, | ||
syn=bp.dyn.Expon.desc(size=ni, tau=10.), | ||
delay=0.1, | ||
comm=bp.dnn.JitFPHomoLinear(ni, ne, prob=0.02, weight=6.7), | ||
out=bp.dyn.COBA(E=-80.), | ||
post=self.E) | ||
self.I2I = bp.dyn.ProjAlignPreMg1(pre=self.I, | ||
syn=bp.dyn.Expon.desc(size=ni, tau=10.), | ||
delay=0.1, | ||
comm=bp.dnn.JitFPHomoLinear(ni, ni, prob=0.02, weight=6.7), | ||
out=bp.dyn.COBA(E=-80.), | ||
post=self.I) | ||
|
||
def update(self, inp): | ||
self.E2E() | ||
self.E2I() | ||
self.I2E() | ||
self.I2I() | ||
self.E(inp) | ||
self.I(inp) | ||
return self.E.spike | ||
|
||
model = EINet() | ||
indices = bm.arange(1000) | ||
spks = bm.for_loop(lambda i: model.step_run(i, 20.), indices) | ||
bp.visualize.raster_plot(indices, spks, show=True) | ||
|
||
|
||
def model5(): | ||
class EINet(bp.DynSysGroup): | ||
def __init__(self): | ||
super().__init__() | ||
ne, ni = 3200, 800 | ||
self.E = bp.dyn.LifRefLTC(ne, V_rest=-60., V_th=-50., V_reset=-60., tau=20., tau_ref=5., | ||
V_initializer=bp.init.Normal(-55., 2.)) | ||
self.I = bp.dyn.LifRefLTC(ni, V_rest=-60., V_th=-50., V_reset=-60., tau=20., tau_ref=5., | ||
V_initializer=bp.init.Normal(-55., 2.)) | ||
self.E2E = bp.dyn.ProjAlignPreMg2(pre=self.E, | ||
delay=0.1, | ||
syn=bp.dyn.Expon.desc(size=ne, tau=5.), | ||
comm=bp.dnn.JitFPHomoLinear(ne, ne, prob=0.02, weight=0.6), | ||
out=bp.dyn.COBA(E=0.), | ||
post=self.E) | ||
self.E2I = bp.dyn.ProjAlignPreMg2(pre=self.E, | ||
delay=0.1, | ||
syn=bp.dyn.Expon.desc(size=ne, tau=5.), | ||
comm=bp.dnn.JitFPHomoLinear(ne, ni, prob=0.02, weight=0.6), | ||
out=bp.dyn.COBA(E=0.), | ||
post=self.I) | ||
self.I2E = bp.dyn.ProjAlignPreMg2(pre=self.I, | ||
delay=0.1, | ||
syn=bp.dyn.Expon.desc(size=ni, tau=10.), | ||
comm=bp.dnn.JitFPHomoLinear(ni, ne, prob=0.02, weight=6.7), | ||
out=bp.dyn.COBA(E=-80.), | ||
post=self.E) | ||
self.I2I = bp.dyn.ProjAlignPreMg2(pre=self.I, | ||
delay=0.1, | ||
syn=bp.dyn.Expon.desc(size=ni, tau=10.), | ||
comm=bp.dnn.JitFPHomoLinear(ni, ni, prob=0.02, weight=6.7), | ||
out=bp.dyn.COBA(E=-80.), | ||
post=self.I) | ||
|
||
def update(self, inp): | ||
self.E2E() | ||
self.E2I() | ||
self.I2E() | ||
self.I2I() | ||
self.E(inp) | ||
self.I(inp) | ||
return self.E.spike | ||
|
||
model = EINet() | ||
indices = bm.arange(1000) | ||
spks = bm.for_loop(lambda i: model.step_run(i, 20.), indices) | ||
bp.visualize.raster_plot(indices, spks, show=True) | ||
|
||
|
||
def vanalla_proj(): | ||
class EINet(bp.DynSysGroup): | ||
def __init__(self): | ||
super().__init__() | ||
self.N = bp.dyn.LifRefLTC(4000, V_rest=-60., V_th=-50., V_reset=-60., tau=20., tau_ref=5., | ||
V_initializer=bp.init.Normal(-55., 1.)) | ||
self.delay = bp.VarDelay(self.N.spike, entries={'delay': 2}) | ||
self.syn1 = bp.dyn.Expon(size=3200, tau=5.) | ||
self.syn2 = bp.dyn.Expon(size=800, tau=10.) | ||
self.E = bp.dyn.VanillaProj( | ||
comm=bp.dnn.CSRLinear(bp.conn.FixedProb(0.02, pre=3200, post=4000), weight=0.6), | ||
out=bp.dyn.COBA(E=0.), | ||
post=self.N | ||
) | ||
self.I = bp.dyn.VanillaProj( | ||
comm=bp.dnn.CSRLinear(bp.conn.FixedProb(0.02, pre=800, post=4000), weight=6.7), | ||
out=bp.dyn.COBA(E=-80.), | ||
post=self.N | ||
) | ||
|
||
def update(self, input): | ||
spk = self.delay.at('I') | ||
self.E(self.syn1(spk[:3200])) | ||
self.I(self.syn2(spk[3200:])) | ||
self.delay(self.N(input)) | ||
return self.N.spike.value | ||
|
||
model = EINet() | ||
indices = bm.arange(10000) | ||
spks = bm.for_loop(lambda i: model.step_run(i, 20.), indices, progress_bar=True) | ||
bp.visualize.raster_plot(indices, spks, show=True) | ||
|
||
|
||
if __name__ == '__main__': | ||
# model1() | ||
# model2() | ||
# model3() | ||
# model4() | ||
# model5() | ||
vanalla_proj() |