-
Notifications
You must be signed in to change notification settings - Fork 94
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
0378cb5
commit 36e4cd4
Showing
3 changed files
with
236 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
227 changes: 227 additions & 0 deletions
227
examples/dynamics_simulation/decision_making_network.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,227 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
|
||
import brainpy as bp | ||
import brainpy.math as bm | ||
|
||
|
||
class AMPA(bp.Projection): | ||
def __init__(self, pre, post, conn, delay, g_max, tau, E): | ||
super().__init__() | ||
if conn == 'all2all': | ||
comm = bp.dnn.AllToAll(pre.num, post.num, g_max) | ||
elif conn == 'one2one': | ||
comm = bp.dnn.OneToOne(pre.num, g_max) | ||
else: | ||
raise ValueError | ||
syn = bp.dyn.Expon.desc(post.num, tau=tau) | ||
out = bp.dyn.COBA.desc(E=E) | ||
self.proj = bp.dyn.ProjAlignPostMg2( | ||
pre=pre, delay=delay, comm=comm, | ||
syn=syn, out=out, post=post | ||
) | ||
|
||
|
||
class NMDA(bp.Projection): | ||
def __init__(self, pre, post, conn, delay, g_max): | ||
super().__init__() | ||
if conn == 'all2all': | ||
comm = bp.dnn.AllToAll(pre.num, post.num, g_max) | ||
elif conn == 'one2one': | ||
comm = bp.dnn.OneToOne(pre.num, g_max) | ||
else: | ||
raise ValueError | ||
syn = bp.dyn.NMDA.desc(pre.num, a=0.5, tau_decay=100., tau_rise=2.) | ||
out = bp.dyn.MgBlock(E=0., cc_Mg=1.0) | ||
self.proj = bp.dyn.ProjAlignPreMg2( | ||
pre=pre, delay=delay, syn=syn, | ||
comm=comm, out=out, post=post | ||
) | ||
|
||
|
||
class Tool: | ||
def __init__(self, pre_stimulus_period=100., stimulus_period=1000., delay_period=500.): | ||
self.pre_stimulus_period = pre_stimulus_period | ||
self.stimulus_period = stimulus_period | ||
self.delay_period = delay_period | ||
self.freq_variance = 10. | ||
self.freq_interval = 50. | ||
self.total_period = pre_stimulus_period + stimulus_period + delay_period | ||
|
||
def generate_freqs(self, mean): | ||
# stimulus period | ||
n_stim = int(self.stimulus_period / self.freq_interval) | ||
n_interval = int(self.freq_interval / bm.get_dt()) | ||
freqs_stim = np.random.normal(mean, self.freq_variance, (n_stim, 1)) | ||
freqs_stim = np.tile(freqs_stim, (1, n_interval)).flatten() | ||
# pre stimulus period | ||
freqs_pre = np.zeros(int(self.pre_stimulus_period / bm.get_dt())) | ||
# post stimulus period | ||
freqs_delay = np.zeros(int(self.delay_period / bm.get_dt())) | ||
all_freqs = np.concatenate([freqs_pre, freqs_stim, freqs_delay], axis=0) | ||
return bm.asarray(all_freqs) | ||
|
||
def visualize_results(self, mon, IA_freqs, IB_freqs, t_start=0., title=None): | ||
fig, gs = bp.visualize.get_figure(4, 1, 3, 10) | ||
axes = [fig.add_subplot(gs[i, 0]) for i in range(4)] | ||
|
||
ax = axes[0] | ||
bp.visualize.raster_plot(mon['ts'], mon['A.spike'], markersize=1, ax=ax) | ||
if title: ax.set_title(title) | ||
ax.set_ylabel("Group A") | ||
ax.set_xlim(t_start, self.total_period + 1) | ||
ax.axvline(self.pre_stimulus_period, linestyle='dashed') | ||
ax.axvline(self.pre_stimulus_period + self.stimulus_period, linestyle='dashed') | ||
ax.axvline(self.pre_stimulus_period + self.stimulus_period + self.delay_period, linestyle='dashed') | ||
|
||
ax = axes[1] | ||
bp.visualize.raster_plot(mon['ts'], mon['B.spike'], markersize=1, ax=ax) | ||
ax.set_ylabel("Group B") | ||
ax.set_xlim(t_start, self.total_period + 1) | ||
ax.axvline(self.pre_stimulus_period, linestyle='dashed') | ||
ax.axvline(self.pre_stimulus_period + self.stimulus_period, linestyle='dashed') | ||
ax.axvline(self.pre_stimulus_period + self.stimulus_period + self.delay_period, linestyle='dashed') | ||
|
||
ax = axes[2] | ||
rateA = bp.measure.firing_rate(mon['A.spike'], width=10.) | ||
rateB = bp.measure.firing_rate(mon['B.spike'], width=10.) | ||
ax.plot(mon['ts'], rateA, label="Group A") | ||
ax.plot(mon['ts'], rateB, label="Group B") | ||
ax.set_ylabel('Population activity [Hz]') | ||
ax.set_xlim(t_start, self.total_period + 1) | ||
ax.axvline(self.pre_stimulus_period, linestyle='dashed') | ||
ax.axvline(self.pre_stimulus_period + self.stimulus_period, linestyle='dashed') | ||
ax.axvline(self.pre_stimulus_period + self.stimulus_period + self.delay_period, linestyle='dashed') | ||
ax.legend() | ||
|
||
ax = axes[3] | ||
ax.plot(mon['ts'], IA_freqs, label="group A") | ||
ax.plot(mon['ts'], IB_freqs, label="group B") | ||
ax.set_ylabel("Input activity [Hz]") | ||
ax.set_xlim(t_start, self.total_period + 1) | ||
ax.axvline(self.pre_stimulus_period, linestyle='dashed') | ||
ax.axvline(self.pre_stimulus_period + self.stimulus_period, linestyle='dashed') | ||
ax.axvline(self.pre_stimulus_period + self.stimulus_period + self.delay_period, linestyle='dashed') | ||
ax.legend() | ||
ax.set_xlabel("Time [ms]") | ||
|
||
plt.show() | ||
|
||
|
||
class DecisionMakingNet(bp.DynSysGroup): | ||
def __init__(self, scale=1., f=0.15): | ||
super().__init__() | ||
|
||
num_exc = int(1600 * scale) | ||
num_I, num_A, num_B = int(400 * scale), int(f * num_exc), int(f * num_exc) | ||
num_N = num_exc - num_A - num_B | ||
self.num_A, self.num_B, self.num_N, self.num_I = num_A, num_B, num_N, num_I | ||
|
||
poisson_freq = 2400. # Hz | ||
w_pos = 1.7 | ||
w_neg = 1. - f * (w_pos - 1.) / (1. - f) | ||
g_ext2E_AMPA = 2.1 # nS | ||
g_ext2I_AMPA = 1.62 # nS | ||
g_E2E_AMPA = 0.05 / scale # nS | ||
g_E2I_AMPA = 0.04 / scale # nS | ||
g_E2E_NMDA = 0.165 / scale # nS | ||
g_E2I_NMDA = 0.13 / scale # nS | ||
g_I2E_GABAa = 1.3 / scale # nS | ||
g_I2I_GABAa = 1.0 / scale # nS | ||
|
||
neu_par = dict(V_rest=-70., V_reset=-55., V_th=-50., V_initializer=bp.init.OneInit(-70.)) | ||
|
||
# E neurons/pyramid neurons | ||
self.A = bp.dyn.LifRef(num_A, tau=20., R=0.04, tau_ref=2., **neu_par) | ||
self.B = bp.dyn.LifRef(num_B, tau=20., R=0.04, tau_ref=2., **neu_par) | ||
self.N = bp.dyn.LifRef(num_N, tau=20., R=0.04, tau_ref=2., **neu_par) | ||
|
||
# I neurons/interneurons | ||
self.I = bp.dyn.LifRef(num_I, tau=10., R=0.05, tau_ref=1., **neu_par) | ||
|
||
# poisson stimulus # 'freqs' as bm.Variable | ||
self.IA = bp.dyn.PoissonGroup(num_A, freqs=bm.Variable(bm.zeros(1))) | ||
self.IB = bp.dyn.PoissonGroup(num_B, freqs=bm.Variable(bm.zeros(1))) | ||
|
||
# noise neurons | ||
self.noise_B = bp.dyn.PoissonGroup(num_B, freqs=poisson_freq) | ||
self.noise_A = bp.dyn.PoissonGroup(num_A, freqs=poisson_freq) | ||
self.noise_N = bp.dyn.PoissonGroup(num_N, freqs=poisson_freq) | ||
self.noise_I = bp.dyn.PoissonGroup(num_I, freqs=poisson_freq) | ||
|
||
# define external inputs | ||
self.IA2A = AMPA(self.IA, self.A, 'one2one', None, g_ext2E_AMPA, tau=2., E=0.) | ||
self.IB2B = AMPA(self.IB, self.B, 'one2one', None, g_ext2E_AMPA, tau=2., E=0.) | ||
|
||
# define AMPA projections from N | ||
self.N2B_AMPA = AMPA(self.N, self.B, 'all2all', 0.5, g_E2E_AMPA * w_neg, tau=2., E=0.) | ||
self.N2A_AMPA = AMPA(self.N, self.A, 'all2all', 0.5, g_E2E_AMPA * w_neg, tau=2., E=0.) | ||
self.N2N_AMPA = AMPA(self.N, self.N, 'all2all', 0.5, g_E2E_AMPA, tau=2., E=0.) | ||
self.N2I_AMPA = AMPA(self.N, self.I, 'all2all', 0.5, g_E2I_AMPA, tau=2., E=0.) | ||
|
||
# define NMDA projections from N | ||
self.N2B_NMDA = NMDA(self.N, self.B, 'all2all', 0.5, g_E2E_NMDA * w_neg) | ||
self.N2A_NMDA = NMDA(self.N, self.A, 'all2all', 0.5, g_E2E_NMDA * w_neg) | ||
self.N2N_NMDA = NMDA(self.N, self.N, 'all2all', 0.5, g_E2E_NMDA) | ||
self.N2I_NMDA = NMDA(self.N, self.I, 'all2all', 0.5, g_E2I_NMDA) | ||
|
||
# define AMPA projections from B | ||
self.B2B_AMPA = AMPA(self.B, self.B, 'all2all', 0.5, g_E2E_AMPA * w_pos, tau=2., E=0.) | ||
self.B2A_AMPA = AMPA(self.B, self.A, 'all2all', 0.5, g_E2E_AMPA * w_neg, tau=2., E=0.) | ||
self.B2N_AMPA = AMPA(self.B, self.N, 'all2all', 0.5, g_E2E_AMPA, tau=2., E=0.) | ||
self.B2I_AMPA = AMPA(self.B, self.I, 'all2all', 0.5, g_E2I_AMPA, tau=2., E=0.) | ||
|
||
# define NMDA projections from B | ||
self.B2B_NMDA = NMDA(self.B, self.B, 'all2all', 0.5, g_E2E_NMDA * w_pos) | ||
self.B2A_NMDA = NMDA(self.B, self.A, 'all2all', 0.5, g_E2E_NMDA * w_neg) | ||
self.B2N_NMDA = NMDA(self.B, self.N, 'all2all', 0.5, g_E2E_NMDA) | ||
self.B2I_NMDA = NMDA(self.B, self.I, 'all2all', 0.5, g_E2I_NMDA) | ||
|
||
# define AMPA projections from A | ||
self.A2B_AMPA = AMPA(self.A, self.B, 'all2all', 0.5, g_E2E_AMPA * w_neg, tau=2., E=0.) | ||
self.A2A_AMPA = AMPA(self.A, self.A, 'all2all', 0.5, g_E2E_AMPA * w_pos, tau=2., E=0.) | ||
self.A2N_AMPA = AMPA(self.A, self.N, 'all2all', 0.5, g_E2E_AMPA, tau=2., E=0.) | ||
self.A2I_AMPA = AMPA(self.A, self.I, 'all2all', 0.5, g_E2I_AMPA, tau=2., E=0.) | ||
|
||
# define NMDA projections from A | ||
self.A2B_NMDA = NMDA(self.A, self.B, 'all2all', 0.5, g_E2E_NMDA * w_neg) | ||
self.A2A_NMDA = NMDA(self.A, self.A, 'all2all', 0.5, g_E2E_NMDA * w_pos) | ||
self.A2N_NMDA = NMDA(self.A, self.N, 'all2all', 0.5, g_E2E_NMDA) | ||
self.A2I_NMDA = NMDA(self.A, self.I, 'all2all', 0.5, g_E2I_NMDA) | ||
|
||
# define I->E/I conn | ||
self.I2B = AMPA(self.I, self.B, 'all2all', 0.5, g_I2E_GABAa, tau=5., E=-70.) | ||
self.I2A = AMPA(self.I, self.A, 'all2all', 0.5, g_I2E_GABAa, tau=5., E=-70.) | ||
self.I2N = AMPA(self.I, self.N, 'all2all', 0.5, g_I2E_GABAa, tau=5., E=-70.) | ||
self.I2I = AMPA(self.I, self.I, 'all2all', 0.5, g_I2I_GABAa, tau=5., E=-70.) | ||
|
||
# define external projections | ||
self.noise2B = AMPA(self.noise_B, self.B, 'one2one', None, g_ext2E_AMPA, tau=2., E=0.) | ||
self.noise2A = AMPA(self.noise_A, self.A, 'one2one', None, g_ext2E_AMPA, tau=2., E=0.) | ||
self.noise2N = AMPA(self.noise_N, self.N, 'one2one', None, g_ext2E_AMPA, tau=2., E=0.) | ||
self.noise2I = AMPA(self.noise_I, self.I, 'one2one', None, g_ext2I_AMPA, tau=2., E=0.) | ||
|
||
|
||
def single_run(): | ||
tool = Tool() | ||
net = DecisionMakingNet() | ||
|
||
mu0 = 40. | ||
coherence = 40.6 | ||
IA_freqs = tool.generate_freqs(mu0 + mu0 / 100. * coherence) | ||
IB_freqs = tool.generate_freqs(mu0 - mu0 / 100. * coherence) | ||
|
||
def give_input(): | ||
i = bp.share['i'] | ||
net.IA.freqs[0] = IA_freqs[i] | ||
net.IB.freqs[0] = IB_freqs[i] | ||
|
||
runner = bp.DSRunner(net, inputs=give_input, monitors=['A.spike', 'B.spike']) | ||
runner.run(tool.total_period) | ||
tool.visualize_results(runner.mon, IA_freqs, IB_freqs) | ||
|
||
|
||
if __name__ == '__main__': | ||
single_run() |