Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

brain-score.org submission (user:405) | (public:False) #1577

Merged
merged 2 commits into from
Dec 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions brainscore_vision/models/alexnet_no_specular_4/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@

from brainscore_vision import model_registry
from brainscore_vision.model_helpers.brain_transformation import ModelCommitment
from .model import get_model, get_layers

model_registry['alexnet_no_specular_iteration=4'] = lambda: ModelCommitment(identifier='alexnet_no_specular_iteration=4', activations_model=get_model('alexnet_no_specular_iteration=4'), layers=get_layers('alexnet_no_specular_iteration=4'))
200 changes: 200 additions & 0 deletions brainscore_vision/models/alexnet_no_specular_4/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,200 @@

from brainscore_vision.model_helpers.check_submission import check_models
import functools
import numpy as np
import torch
from brainscore_vision.model_helpers.activations.pytorch import PytorchWrapper
from PIL import Image
from torch import nn
import pytorch_lightning as pl
import torchvision.models as models
import gdown
import glob
import os
from brainscore_vision.model_helpers.activations.pytorch import load_preprocess_images

def get_bibtex(model_identifier):
return 'VGG16'

def get_model_list():
return ['alexnet_no_specular_iteration=4']

def get_model(name):
keyword = 'no_specular'
iteration = 4
network = 'alexnet'
url = 'https://eggerbernhard.ch/shreya/latest_alexnet/no_specular_4.ckpt'
output = 'alexnet_no_specular_iteration=4.ckpt'
gdown.download(url, output)


if keyword != 'imagenet_trained' and keyword != 'no_training':
lx_whole = [f"alexnet_no_specular_iteration=4.ckpt"]
if len(lx_whole) > 1:
lx_whole = [lx_whole[-1]]
elif keyword == 'imagenet_trained' or keyword == 'no_training':
print('keyword is imagenet')
lx_whole = ['x']

for model_ckpt in lx_whole:
print(model_ckpt)
last_module_name = None
last_module = None
layers = []
if keyword == 'imagenet_trained' and network != 'clip':
model = torch.hub.load('pytorch/vision', network, pretrained=True)
for name, module in model.named_modules():
last_module_name = name
last_module = module
layers.append(name)
else:
model = torch.hub.load('pytorch/vision', network, pretrained=False)
if model_ckpt != 'x':
ckpt = torch.load(model_ckpt, map_location='cpu')
if model_ckpt != 'x' and network == 'alexnet' and keyword != 'imagenet_trained':
ckpt2 = {}
for keys in ckpt['state_dict']:
print(keys)
print(ckpt['state_dict'][keys].shape)
print('---')
k2 = keys.split('model.')[1]
ckpt2[k2] = ckpt['state_dict'][keys]
model.load_state_dict(ckpt2)
if model_ckpt != 'x' and network == 'vgg16' and keyword != 'imagenet_trained':
ckpt2 = {}
for keys in ckpt['state_dict']:
print(keys)
print(ckpt['state_dict'][keys].shape)
print('---')
k2 = keys.split('model.')[1]
ckpt2[k2] = ckpt['state_dict'][keys]
model.load_state_dict(ckpt2)
# Add more cases for other networks as needed
assert name == 'alexnet_no_specular_iteration=4'
url = 'https://eggerbernhard.ch/shreya/latest_alexnet/no_specular_4.ckpt'
output = 'alexnet_no_specular_iteration=4.ckpt'
gdown.download(url, output)
layers = []
for name, module in model._modules.items():
print(name, "->", module)
layers.append(name)

preprocessing = functools.partial(load_preprocess_images, image_size=224)
activations_model = PytorchWrapper(identifier=name, model=model, preprocessing=preprocessing)

return activations_model

def get_layers(name):
keyword = 'no_specular'
iteration = 4
network = 'alexnet'
url = 'https://eggerbernhard.ch/shreya/latest_alexnet/no_specular_4.ckpt'
output = 'alexnet_no_specular_iteration=4.ckpt'
gdown.download(url, output)


if keyword != 'imagenet_trained' and keyword != 'no_training':
lx_whole = [f"alexnet_no_specular_iteration=4.ckpt"]
if len(lx_whole) > 1:
lx_whole = [lx_whole[-1]]
elif keyword == 'imagenet_trained' or keyword == 'no_training':
print('keyword is imagenet')
lx_whole = ['x']


for model_ckpt in lx_whole:
print(model_ckpt)
last_module_name = None
last_module = None
if keyword == 'imagenet_trained' and network != 'clip':
model = torch.hub.load('pytorch/vision', network, pretrained=True)
for name, module in model.named_modules():
last_module_name = name
last_module = module
layers.append(name)
else:
model = torch.hub.load('pytorch/vision', network, pretrained=False)
if model_ckpt != 'x':
ckpt = torch.load(model_ckpt, map_location='cpu')
if model_ckpt != 'x' and network == 'alexnet' and keyword != 'imagenet_trained':
ckpt2 = {}
for keys in ckpt['state_dict']:
print(keys)
print(ckpt['state_dict'][keys].shape)
print('---')
k2 = keys.split('model.')[1]
ckpt2[k2] = ckpt['state_dict'][keys]
model.load_state_dict(ckpt2)
if model_ckpt != 'x' and network == 'vgg16' and keyword != 'imagenet_trained':
ckpt2 = {}
for keys in ckpt['state_dict']:
print(keys)
print(ckpt['state_dict'][keys].shape)
print('---')
k2 = keys.split('model.')[1]
ckpt2[k2] = ckpt['state_dict'][keys]
model.load_state_dict(ckpt2)
# Add more cases for other networks as needed
layers = []
for name, module in model._modules.items():
print(name, "->", module)
layers.append(name)
return layers

if __name__ == '__main__':
device = "cpu"
global model
global keyword
global network
global iteration
keyword = 'no_specular'
iteration = 4
network = 'alexnet'
url = 'https://eggerbernhard.ch/shreya/latest_alexnet/no_specular_4.ckpt'
output = 'alexnet_no_specular_iteration=4.ckpt'
gdown.download(url, output)


if keyword != 'imagenet_trained' and keyword != 'no_training':
lx_whole = [f"alexnet_no_specular_iteration=4.ckpt"]
if len(lx_whole) > 1:
lx_whole = [lx_whole[-1]]
elif keyword == 'imagenet_trained' or keyword == 'no_training':
print('keyword is imagenet')
lx_whole = ['x']

for model_ckpt in lx_whole:
print(model_ckpt)
last_module_name = None
last_module = None
layers = []
if keyword == 'imagenet_trained' and network != 'clip':
model = torch.hub.load('pytorch/vision', network, pretrained=True)
for name, module in model.named_modules():
last_module_name = name
last_module = module
layers.append(name)
else:
model = torch.hub.load('pytorch/vision', network, pretrained=False)
if model_ckpt != 'x':
ckpt = torch.load(model_ckpt, map_location='cpu')
if model_ckpt != 'x' and network == 'alexnet' and keyword != 'imagenet_trained':
ckpt2 = {}
for keys in ckpt['state_dict']:
print(keys)
print(ckpt['state_dict'][keys].shape)
print('---')
k2 = keys.split('model.')[1]
ckpt2[k2] = ckpt['state_dict'][keys]
model.load_state_dict(ckpt2)
if model_ckpt != 'x' and network == 'vgg16' and keyword != 'imagenet_trained':
ckpt2 = {}
for keys in ckpt['state_dict']:
print(keys)
print(ckpt['state_dict'][keys].shape)
print('---')
k2 = keys.split('model.')[1]
ckpt2[k2] = ckpt['state_dict'][keys]
model.load_state_dict(ckpt2)
# Add more cases for other networks as needed
check_models.check_base_models(__name__)
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
{
"V1": "features",
"V2": "features",
"V4": "features",
"IT": "features"
}
29 changes: 29 additions & 0 deletions brainscore_vision/models/alexnet_no_specular_4/setup.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-

from setuptools import setup, find_packages

requirements = [
"torchvision",
"torch",
"gdown",
"pytorch_lightning",
"brainscore_vision"
]

setup(
packages=find_packages(exclude=['tests']),
include_package_data=True,
install_requires=requirements,
license="MIT license",
zip_safe=False,
keywords='brain-score template',
classifiers=[
'Development Status :: 2 - Pre-Alpha',
'Intended Audience :: Developers',
'License :: OSI Approved :: MIT License',
'Natural Language :: English',
'Programming Language :: Python :: 3.7',
],
test_suite='tests',
)
3 changes: 3 additions & 0 deletions brainscore_vision/models/alexnet_no_specular_4/test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@

import pytest

Loading