-
Notifications
You must be signed in to change notification settings - Fork 81
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add alexnet_simclr_run1 to models (#838)
Co-authored-by: AutoJenkins <[email protected]>
- Loading branch information
1 parent
4043a0d
commit 59a5d36
Showing
4 changed files
with
277 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
from brainscore_vision import model_registry | ||
from brainscore_vision.model_helpers.brain_transformation import ModelCommitment | ||
from .model import get_model, get_layers | ||
|
||
model_registry['alexnet_w1_mlp4096_simclr_baseline_64715_probe0'] = lambda: ModelCommitment(identifier='alexnet_w1_mlp4096_simclr_baseline_64715_probe0', activations_model=get_model('alexnet_w1_mlp4096_simclr_baseline_64715_probe0'), layers=get_layers('alexnet_w1_mlp4096_simclr_baseline_64715_probe0')) | ||
|
||
model_registry['alexnet_w1_mlp4096_simclr_ratio1augs_d3fbd_probe0'] = lambda: ModelCommitment(identifier='alexnet_w1_mlp4096_simclr_ratio1augs_d3fbd_probe0', activations_model=get_model('alexnet_w1_mlp4096_simclr_ratio1augs_d3fbd_probe0'), layers=get_layers('alexnet_w1_mlp4096_simclr_ratio1augs_d3fbd_probe0')) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,267 @@ | ||
from brainscore_vision.model_helpers.check_submission import check_models | ||
import functools | ||
from brainscore_vision.model_helpers.activations.pytorch import PytorchWrapper | ||
from brainscore_vision.model_helpers.activations.pytorch import load_preprocess_images | ||
import torch | ||
import numpy as np | ||
from brainscore_vision.model_helpers.brain_transformation import ModelCommitment | ||
|
||
# Attention: It is important, that the wrapper identifier is unique per model! | ||
# The results will otherwise be the same due to brain-scores internal result caching mechanism. | ||
# Please load your pytorch model for usage in CPU. There won't be GPUs available for scoring your model. | ||
|
||
import torch.nn as nn | ||
from collections import OrderedDict | ||
import inspect | ||
|
||
try: | ||
from torch.hub import load_state_dict_from_url | ||
except ImportError: | ||
from torch.utils.model_zoo import load_url as load_state_dict_from_url | ||
|
||
class alexnet_backbone(nn.Module): | ||
def __init__(self, in_channel=3, out_dim=(6,6), w=1): | ||
super(alexnet_backbone, self).__init__() | ||
|
||
self.num_features = int(256*w) * out_dim[0] * out_dim[1] | ||
|
||
self.conv_block_1 = nn.Sequential( | ||
nn.Conv2d(in_channel, int(96*w), 11, 4, 2, bias=False), | ||
nn.ReLU(inplace=True), | ||
nn.MaxPool2d(3, 2), | ||
) | ||
self.conv_block_2 = nn.Sequential( | ||
nn.Conv2d(int(96*w), int(256*w), 5, 1, 2, bias=False), | ||
nn.ReLU(inplace=True), | ||
nn.MaxPool2d(3, 2), | ||
) | ||
self.conv_block_3 = nn.Sequential( | ||
nn.Conv2d(int(256*w), int(384*w), 3, 1, 1, bias=False), | ||
nn.ReLU(inplace=True), | ||
) | ||
self.conv_block_4 = nn.Sequential( | ||
nn.Conv2d(int(384*w), int(384*w), 3, 1, 1, bias=False), | ||
nn.ReLU(inplace=True), | ||
) | ||
self.conv_block_5 = nn.Sequential( | ||
nn.Conv2d(int(384*w), int(256*w), 3, 1, 1, bias=False), | ||
nn.ReLU(inplace=True), | ||
nn.MaxPool2d(3, 2), | ||
) | ||
self.avgpool = nn.AdaptiveAvgPool2d(out_dim) | ||
self.head = nn.Identity() # add task-specific head | ||
|
||
def forward_features(self, x): | ||
x = self.conv_block_1(x) | ||
x = self.conv_block_2(x) | ||
x = self.conv_block_3(x) | ||
x = self.conv_block_4(x) | ||
x = self.conv_block_5(x) | ||
x = self.avgpool(x) | ||
return x | ||
|
||
def forward_head(self, x, return_layer_outputs=False): | ||
if hasattr(self, 'head') and 'return_layer_outputs' in inspect.signature(self.head.forward).parameters: | ||
x = self.head(x, return_layer_outputs=return_layer_outputs) | ||
elif hasattr(self, 'head'): | ||
x = self.head(x) | ||
return x | ||
|
||
def forward(self, x, return_layer_outputs=True): | ||
x = self.forward_features(x) | ||
x = self.forward_head(x, return_layer_outputs=return_layer_outputs) | ||
return x | ||
|
||
class Normalize(nn.Module): | ||
|
||
def __init__(self, power=2): | ||
super(Normalize, self).__init__() | ||
self.power = power | ||
|
||
def forward(self, x): | ||
norm = x.pow(self.power).sum(1, keepdim=True).pow(1. / self.power) | ||
out = x.div(norm) | ||
return out | ||
|
||
class MLP(nn.Module): | ||
def __init__(self, mlp_spec, proj_relu=False, mlp_coeff=1, output_bias=False, | ||
norm=nn.BatchNorm1d, nonlin=nn.ReLU, l2norm=False, dropout=None, dropout_first=False): | ||
super(MLP, self).__init__() | ||
|
||
# Construct the MLP layers as before | ||
self.layers = self._construct_mlp_layers(mlp_spec, proj_relu, mlp_coeff, output_bias, norm, nonlin, l2norm, dropout, dropout_first) | ||
|
||
def _construct_mlp_layers(self, mlp_spec, proj_relu, mlp_coeff, output_bias, norm, nonlin, l2norm, dropout, dropout_first): | ||
# check whether activation function takes the inplace parameter | ||
has_inplace = 'inplace' in inspect.signature(nonlin.__init__).parameters | ||
dropout_last = ~dropout_first | ||
|
||
# This method constructs the MLP layers | ||
layers = [] | ||
f = list(map(int, mlp_spec.split("-"))) | ||
f[-2] = int(f[-2] * mlp_coeff) | ||
|
||
# constuct each linear block | ||
for i in range(len(f) - 2): | ||
fc_layers = [] | ||
|
||
if dropout is not None and dropout_first: | ||
fc_layers += [('dropout', nn.Dropout(dropout, inplace=True))] | ||
|
||
fc_layers += [('linear', nn.Linear(f[i], f[i + 1]))] | ||
|
||
if norm is not None: | ||
fc_layers += [('norm', norm(f[i + 1]))] | ||
|
||
if nonlin is not None: | ||
fc_layers += [ ('nonlin', nonlin(inplace=True) if has_inplace else nonlin())] | ||
|
||
if dropout is not None and dropout_last: | ||
fc_layers += [('dropout', nn.Dropout(dropout, inplace=False))] | ||
|
||
layers.append(nn.Sequential(OrderedDict(fc_layers))) | ||
|
||
# get layer of last linear block | ||
last_layers = [ | ||
('linear', nn.Linear(f[-2], f[-1], bias=output_bias)) | ||
] | ||
|
||
if proj_relu: | ||
last_layers += [('nonlin', nn.ReLU(True))] | ||
|
||
layers.append(nn.Sequential(OrderedDict(last_layers))) | ||
|
||
if l2norm: | ||
layers.append(Normalize(power=2)) | ||
|
||
return nn.ModuleList(layers) | ||
|
||
def forward(self, x, return_layer_outputs=True): | ||
x = x.flatten(start_dim=1) | ||
list_outputs = [x.detach()] | ||
for layer in self.layers: | ||
x = layer(x) | ||
list_outputs.append(x.detach()) # Store the output after each layer | ||
|
||
# The final value of x is the embedding | ||
embeddings = x | ||
|
||
if return_layer_outputs: | ||
return embeddings, list_outputs | ||
|
||
return embeddings | ||
|
||
class LinearProbes(nn.Module): | ||
def __init__(self, mlp_spec, mlp_coeff=1, num_classes=1000): | ||
super().__init__() | ||
print("LINEAR PROBE NUM CLASSES:", num_classes) | ||
f = list(map(int, mlp_spec.split("-"))) | ||
f[-2] = int(f[-2] * mlp_coeff) | ||
self.probes = [] | ||
for num_features in f: | ||
self.probes.append(nn.Linear(num_features, num_classes)) | ||
self.probes = nn.Sequential(*self.probes) | ||
|
||
def forward(self, list_outputs, binary=False): | ||
return [self.probes[i](list_outputs[i]) for i in range(len(list_outputs))] | ||
|
||
class SSLModelWithLinearProbes(nn.Module): | ||
def __init__(self, model, probes, probe_layer=0, img_size=224): | ||
super(SSLModelWithLinearProbes, self).__init__() | ||
self.model = model | ||
self.probes = probes | ||
self.probe_layer = probe_layer | ||
|
||
def forward(self, x, probe_layer=None): | ||
probe_layer = self.probe_layer if probe_layer is None else probe_layer | ||
embeddings, list_outputs = self.model(x) | ||
logits = [self.probes[layer](list_outputs[layer]) for layer in range(len(self.probes))] | ||
logits = logits[probe_layer] | ||
return logits | ||
|
||
def load_checkpoint(model, url): | ||
checkpoint = load_state_dict_from_url(url, check_hash=True, map_location='cpu') | ||
state_dict = {k.replace("module.",""):v for k,v in checkpoint['state_dict'].items()} | ||
state_dict = {k.replace("base_arch.",""):v for k,v in state_dict.items()} | ||
del state_dict['loss_fun.temperature'] | ||
probes = {k.replace("module.probes.",""):v for k,v in checkpoint['probes'].items()} | ||
|
||
msg = model.model.load_state_dict(state_dict) | ||
print(f"model: {msg}") | ||
msg = model.probes.load_state_dict(probes) | ||
print(f"probes: {msg}") | ||
|
||
return model | ||
|
||
def alexnet_mlp(probe_layer, in_channel=3, w=1, mlp='4096-4096-4096', fc_num_classes=1000, out_dim=(6,6), | ||
output_bias=False, dropout=None): | ||
network = alexnet_backbone(in_channel=in_channel, out_dim=out_dim, w=w) | ||
mlp = f'{network.num_features}-{mlp}' | ||
network.head = MLP(mlp, proj_relu=False, mlp_coeff=1, output_bias=output_bias, | ||
norm=nn.BatchNorm1d, nonlin=nn.ReLU, l2norm=False, | ||
dropout=dropout, dropout_first=False) | ||
probes = LinearProbes(mlp, num_classes=fc_num_classes).probes | ||
|
||
model = SSLModelWithLinearProbes(network, probes, probe_layer=probe_layer) | ||
|
||
return model | ||
|
||
def alexnet_w1_mlp4096_simclr_baseline_64715_probe0(): | ||
url = 'https://visionlab-members.s3.wasabisys.com/alvarez/Projects/configural_shape_private/baseline_models/in1k/alexnet_w1_mlp/simclr/20240513_182357/final_weights-647159ec62.pth' | ||
model = alexnet_mlp(probe_layer=0) | ||
model = load_checkpoint(model, url) | ||
|
||
return model | ||
|
||
def alexnet_w1_mlp4096_simclr_baseline_64715_probe1(): | ||
url = 'https://visionlab-members.s3.wasabisys.com/alvarez/Projects/configural_shape_private/baseline_models/in1k/alexnet_w1_mlp/simclr/20240513_182357/final_weights-647159ec62.pth' | ||
model = alexnet_mlp(probe_layer=1) | ||
model = load_checkpoint(model, url) | ||
|
||
return model | ||
|
||
def alexnet_w1_mlp4096_simclr_ratio1augs_d3fbd_probe0(): | ||
url = 'https://visionlab-members.s3.wasabisys.com/alvarez/Projects/configural_shape_private/simclr_correlated_crops/in1k/alexnet_w1_mlp/simclr/20240513_211743/final_weights-d3fbd988f5.pth' | ||
model = alexnet_mlp(probe_layer=0) | ||
model = load_checkpoint(model, url) | ||
return model | ||
|
||
def alexnet_w1_mlp4096_simclr_ratio1augs_d3fbd_probe1(): | ||
url = 'https://visionlab-members.s3.wasabisys.com/alvarez/Projects/configural_shape_private/simclr_correlated_crops/in1k/alexnet_w1_mlp/simclr/20240513_211743/final_weights-d3fbd988f5.pth' | ||
model = alexnet_mlp(probe_layer=1) | ||
model = load_checkpoint(model, url) | ||
return model | ||
|
||
def get_model_list(): | ||
return ['alexnet_w1_mlp4096_simclr_baseline_64715_probe0', 'alexnet_w1_mlp4096_simclr_ratio1augs_d3fbd_probe0'] | ||
|
||
def get_model(name): | ||
assert name in get_model_list() | ||
preprocessing = functools.partial(load_preprocess_images, image_size=224, | ||
normalize_mean=(0.485, 0.456, 0.406), | ||
normalize_std=(0.229, 0.224, 0.225)) | ||
|
||
if name=='alexnet_w1_mlp4096_simclr_baseline_64715_probe0': | ||
model = alexnet_w1_mlp4096_simclr_baseline_64715_probe0() | ||
elif name=='alexnet_w1_mlp4096_simclr_ratio1augs_d3fbd_probe0': | ||
model = alexnet_w1_mlp4096_simclr_ratio1augs_d3fbd_probe0() | ||
|
||
wrapper = PytorchWrapper(identifier=name, model=model, preprocessing=preprocessing) | ||
wrapper.image_size = 224 | ||
return wrapper | ||
|
||
|
||
def get_layers(name): | ||
assert name in get_model_list() | ||
return ['model.conv_block_1', 'model.conv_block_2', 'model.conv_block_3', | ||
'model.conv_block_4', 'model.conv_block_5', 'model.head.layers.0', | ||
'model.head.layers.1', 'model.head.layers.2', | ||
'probes.0', 'probes.1', 'probes.2', 'probes.3'] | ||
|
||
|
||
def get_bibtex(model_identifier): | ||
return """xx""" | ||
|
||
|
||
if __name__ == '__main__': | ||
check_models.check_base_models(__name__) |
2 changes: 2 additions & 0 deletions
2
brainscore_vision/models/alexnet_simclr_run1/requirements.txt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
torch | ||
torchvision |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
# Left empty as part of 2023 models migration |