Skip to content

Commit

Permalink
[CI/Build][Misc] Add CI that benchmarks vllm performance on those PRs…
Browse files Browse the repository at this point in the history
… with `perf-benchmarks` label (vllm-project#5073)

Co-authored-by: simon-mo <[email protected]>
  • Loading branch information
KuntaiDu and simon-mo authored Jun 14, 2024
1 parent 0f0d8bc commit 319ad7f
Show file tree
Hide file tree
Showing 13 changed files with 880 additions and 41 deletions.
98 changes: 98 additions & 0 deletions .buildkite/nightly-benchmarks/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
# vLLM benchmark suite

## Introduction

This directory contains the performance benchmarking CI for vllm.
The goal is to help developers know the impact of their PRs on the performance of vllm.

This benchmark will be *triggered* upon:
- A PR being merged into vllm.
- Every commit for those PRs with `perf-benchmarks` label.

**Benchmarking Coverage**: latency, throughput and fix-qps serving on A100 (the support for more GPUs is comming later), with different models.

**Benchmarking Duration**: about 1hr.

## Configuring the workload for the quick benchmark

The workload of the quick benchmark contains two parts: latency tests in `latency-tests.json`, throughput tests in `throughput-tests.json` and serving tests in `serving-tests.json`.

### Latency test

Here is an example of one test inside `latency-tests.json`:

```json
[
...
{
"test_name": "latency_llama8B_tp1",
"parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"tensor_parallel_size": 1,
"load_format": "dummy",
"num_iters_warmup": 5,
"num_iters": 15
}
},
...
]
```

In this example:
- The `test_name` attributes is a unique identifier for the test. In `latency-tests.json`, it must start with `latency_`.
- The `parameters` attribute control the command line arguments to be used for `benchmark_latency.py`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-benchmarks-suite.sh` will convert the underline to dash when feeding the arguments to `benchmark_latency.py`. For example, the corresponding command line arguments for `benchmark_latency.py` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`

Note that the performance numbers are highly sensitive to the value of the parameters. Please make sure the parameters are set correctly.

WARNING: The benchmarking script will save json results by itself, so please do not configure `--output-json` parameter in the json file.


### Throughput test
The tests are specified in `throughput-tests.json`. The syntax is similar to `latency-tests.json`, except for that the parameters will be fed forward to `benchmark_throughput.py`.

The number of this test is also stable -- a slight change on the value of this number might vary the performance numbers by a lot.

### Serving test
We test the throughput by using `benchmark_serving.py` with request rate = inf to cover the online serving overhead. The corresponding parameters are in `serving-tests.json`, and here is an example:

```
[
...
{
"test_name": "serving_llama8B_tp1_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"tensor_parallel_size": 1,
"swap_space": 16,
"disable_log_stats": "",
"disable_log_requests": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
...
]
```

Inside this example:
- The `test_name` attribute is also a unique identifier for the test. It must start with `serving_`.
- The `server-parameters` includes the command line arguments for vLLM server.
- The `client-parameters` includes the command line arguments for `benchmark_serving.py`.
- The `qps_list` controls the list of qps for test. It will be used to configure the `--request-rate` parameter in `benchmark_serving.py`

The number of this test is less stable compared to the delay and latency benchmarks (due to randomized sharegpt dataset sampling inside `benchmark_serving.py`), but a large change on this number (e.g. 5% change) still vary the output greatly.

WARNING: The benchmarking script will save json results by itself, so please do not configure `--save-results` or other results-saving-related parameters in `serving-tests.json`.

## Visualizing the results
The `convert-results-json-to-markdown.py` helps you put the benchmarking results inside a markdown table.
You can find the result presented as a table inside the `buildkite/performance-benchmark` job page.
If you do not see the table, please wait till the benchmark finish running.
The JSON file is also attached within each buildkite job for further analysis.
61 changes: 61 additions & 0 deletions .buildkite/nightly-benchmarks/benchmark-pipeline.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
steps:
- label: "Wait for container to be ready"
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
containers:
- image: badouralix/curl-jq
command:
- sh
- .buildkite/nightly-benchmarks/scripts/wait-for-image.sh
- wait
- label: "A100 Benchmark"
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
containers:
- image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
command:
- bash .buildkite/nightly-benchmarks/run-benchmarks-suite.sh
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
nodeSelector:
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
volumes:
- name: devshm
emptyDir:
medium: Memory
# - label: "H100: NVIDIA SMI"
# agents:
# queue: H100
# plugins:
# - docker#v5.11.0:
# image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
# command:
# - bash
# - .buildkite/nightly-benchmarks/run-benchmarks-suite.sh
# mount-buildkite-agent: true
# propagate-environment: true
# propagate-uid-gid: false
# ipc: host
# gpus: all
# environment:
# - VLLM_USAGE_SOURCE
# - HF_TOKEN

3 changes: 2 additions & 1 deletion .buildkite/nightly-benchmarks/kickoff-pipeline.sh
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
#!/usr/bin/env bash

# NOTE(simon): this script runs inside a buildkite agent with CPU only access.
set -euo pipefail

# Install system packages
Expand All @@ -23,4 +24,4 @@ if [ "$BUILDKITE_PULL_REQUEST" != "false" ]; then
fi

# Upload sample.yaml
buildkite-agent pipeline upload .buildkite/nightly-benchmarks/sample.yaml
buildkite-agent pipeline upload .buildkite/nightly-benchmarks/benchmark-pipeline.yaml
32 changes: 32 additions & 0 deletions .buildkite/nightly-benchmarks/latency-tests.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
[
{
"test_name": "latency_llama8B_tp1",
"parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"tensor_parallel_size": 1,
"load_format": "dummy",
"num_iters_warmup": 5,
"num_iters": 15
}
},
{
"test_name": "latency_llama70B_tp4",
"parameters": {
"model": "meta-llama/Meta-Llama-3-70B-Instruct",
"tensor_parallel_size": 4,
"load_format": "dummy",
"num-iters-warmup": 5,
"num-iters": 15
}
},
{
"test_name": "latency_mixtral8x7B_tp2",
"parameters": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"tensor_parallel_size": 2,
"load_format": "dummy",
"num-iters-warmup": 5,
"num-iters": 15
}
}
]
Loading

0 comments on commit 319ad7f

Please sign in to comment.