Skip to content

Commit

Permalink
Merge pull request #6817 from ZanMervic/scoring-sheet
Browse files Browse the repository at this point in the history
[ENH] ScoringSheet and ScoringSheetViewer widgets added
  • Loading branch information
markotoplak authored Oct 28, 2024
2 parents c27a803 + 12bd5a1 commit ef3e166
Show file tree
Hide file tree
Showing 29 changed files with 2,633 additions and 0 deletions.
1 change: 1 addition & 0 deletions .coveragerc
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ omit =
*/tests/*
*/setup.py
*/*/setup.py
Orange/classification/utils/fasterrisk/*

[report]
exclude_lines =
Expand Down
1 change: 1 addition & 0 deletions Orange/classification/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
from .sgd import *
from .neural_network import *
from .calibration import *
from .scoringsheet import *
try:
from .catgb import *
except ModuleNotFoundError:
Expand Down
152 changes: 152 additions & 0 deletions Orange/classification/scoringsheet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
import numpy as np
from Orange.classification.utils.fasterrisk.fasterrisk import (
RiskScoreOptimizer,
RiskScoreClassifier,
)

from Orange.classification import Learner, Model
from Orange.data import Table, Storage
from Orange.data.filter import HasClass
from Orange.preprocess import Discretize, Impute, Continuize, SelectBestFeatures
from Orange.preprocess.discretize import Binning
from Orange.preprocess.score import ReliefF


def _change_class_var_values(y):
"""
Changes the class variable values from 0 and 1 to -1 and 1 or vice versa.
"""
return np.where(y == 0, -1, np.where(y == -1, 0, y))


class ScoringSheetModel(Model):
def __init__(self, model):
self.model = model
super().__init__()

def predict_storage(self, table):
if not isinstance(table, Storage):
raise TypeError("Data is not a subclass of Orange.data.Storage.")

y_pred = _change_class_var_values(self.model.predict(table.X))
y_prob = self.model.predict_prob(table.X)

scores = np.hstack(((1 - y_prob).reshape(-1, 1), y_prob.reshape(-1, 1)))
return y_pred, scores


class ScoringSheetLearner(Learner):
__returns__ = ScoringSheetModel
preprocessors = [HasClass(), Discretize(method=Binning()), Impute(), Continuize()]

def __init__(
self,
num_attr_after_selection=20,
num_decision_params=5,
max_points_per_param=5,
num_input_features=None,
preprocessors=None,
):
# Set the num_decision_params, max_points_per_param, and num_input_features normally
self.num_decision_params = num_decision_params
self.max_points_per_param = max_points_per_param
self.num_input_features = num_input_features
self.feature_to_group = None

if preprocessors is None:
self.preprocessors = [
*self.preprocessors,
SelectBestFeatures(method=ReliefF(), k=num_attr_after_selection),
]

super().__init__(preprocessors=preprocessors)

def incompatibility_reason(self, domain):
reason = None
if len(domain.class_vars) > 1 and not self.supports_multiclass:
reason = "Too many target variables."
elif not domain.has_discrete_class:
reason = "Categorical class variable expected."
elif len(domain.class_vars[0].values) > 2:
reason = "Too many target variable values."
return reason

def fit_storage(self, table):
if not isinstance(table, Storage):
raise TypeError("Data is not a subclass of Orange.data.Storage.")
elif table.get_nan_count_class() > 0:
raise ValueError("Class variable contains missing values.")

if self.num_input_features is not None:
self._generate_feature_group_index(table)

X, y, _ = table.X, table.Y, table.W if table.has_weights() else None
learner = RiskScoreOptimizer(
X=X,
y=_change_class_var_values(y),
k=self.num_decision_params,
select_top_m=1,
lb=-self.max_points_per_param,
ub=self.max_points_per_param,
group_sparsity=self.num_input_features,
featureIndex_to_groupIndex=self.feature_to_group,
)

self._optimize_decision_params_adjustment(learner)

multipliers, intercepts, coefficients = learner.get_models()

model = RiskScoreClassifier(
multiplier=multipliers[0],
intercept=intercepts[0],
coefficients=coefficients[0],
featureNames=[attribute.name for attribute in table.domain.attributes],
X_train=X if self.num_decision_params > 10 else None,
)

return ScoringSheetModel(model)

def _optimize_decision_params_adjustment(self, learner):
"""
This function attempts to optimize (fit) the learner, reducing the number of decision
parameters ('k')if optimization fails due to being too high.
Sometimes, the number of decision parameters is too high for the
number of input features. Which results in a ValueError.
Continues until successful or 'k' cannot be reduced further.
"""
while True:
try:
learner.optimize()
return True
except ValueError as e:
learner.k -= 1
if learner.k < 1:
# Raise a custom error when k falls below 1
raise ValueError(
"The number of input features is too low for the current settings."
) from e

def _generate_feature_group_index(self, table):
"""
Returns a feature index to group index mapping. The group index is used to group
binarized features that belong to the same original feature.
"""
original_feature_names = [
attribute.compute_value.variable.name
for attribute in table.domain.attributes
]
feature_to_group_index = {
feature: idx for idx, feature in enumerate(set(original_feature_names))
}
feature_to_group = [
feature_to_group_index[feature] for feature in original_feature_names
]
self.feature_to_group = np.asarray(feature_to_group)


if __name__ == "__main__":
mock_learner = ScoringSheetLearner(20, 5, 10, None)
mock_table = Table("https://datasets.biolab.si/core/heart_disease.tab")
mock_model = mock_learner(mock_table)
mock_model(mock_table)
Empty file.
32 changes: 32 additions & 0 deletions Orange/classification/utils/fasterrisk/LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@


BSD 3-Clause License

Copyright (c) 2022, Jiachang Liu
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

7 changes: 7 additions & 0 deletions Orange/classification/utils/fasterrisk/NOTICE
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
Notice for Use of FasterRisk Code in Orange3

This directory ('Orange/classification/fasterrisk') contains code from the "FasterRisk" project by Jiachang Liu. This code is used under the BSD 3-Clause License. The source of this code can be found at https://github.com/jiachangliu/FasterRisk.

The inclusion of the FasterRisk code in this project serves as a temporary solution to address compatibility and functionality issues arising from the strict requirements of the original package. This measure will remain in place until such time as the original maintainer updates the package to address these issues.

A copy of the BSD 3-Clause License under which the FasterRisk code is licensed is included in this directory.
Empty file.
123 changes: 123 additions & 0 deletions Orange/classification/utils/fasterrisk/base_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
import numpy as np
import sys
# import warnings
# warnings.filterwarnings("ignore")
from Orange.classification.utils.fasterrisk.utils import normalize_X, compute_logisticLoss_from_ExpyXB

class logRegModel:
def __init__(self, X, y, lambda2=1e-8, intercept=True, original_lb=-5, original_ub=5):
self.X = X
self.X_normalized, self.X_mean, self.X_norm, self.scaled_feature_indices = normalize_X(self.X)
self.n, self.p = self.X_normalized.shape
self.y = y.reshape(-1).astype(float)
self.yX = y.reshape(-1, 1) * self.X_normalized
self.yXT = np.zeros((self.p, self.n))
self.yXT[:] = np.transpose(self.yX)[:]
self.beta0 = 0
self.betas = np.zeros((self.p, ))
self.ExpyXB = np.exp(self.y * self.beta0 + self.yX.dot(self.betas))

self.intercept = intercept
self.lambda2 = lambda2
self.twoLambda2 = 2 * self.lambda2

self.Lipschitz = 0.25 + self.twoLambda2
self.lbs = original_lb * np.ones(self.p)
self.lbs[self.scaled_feature_indices] *= self.X_norm[self.scaled_feature_indices]
self.ubs = original_ub * np.ones(self.p)
self.ubs[self.scaled_feature_indices] *= self.X_norm[self.scaled_feature_indices]

self.total_child_added = 0

def warm_start_from_original_beta0_betas(self, original_beta0, original_betas):
# betas_initial has dimension (p+1, 1)
self.original_beta0 = original_beta0
self.original_betas = original_betas
self.beta0, self.betas = self.transform_coefficients_to_normalized_space(self.original_beta0, self.original_betas)
print("warmstart solution in normalized space is {} and {}".format(self.beta0, self.betas))
self.ExpyXB = np.exp(self.y * self.beta0 + self.yX.dot(self.betas))

def warm_start_from_beta0_betas(self, beta0, betas):
self.beta0, self.betas = beta0, betas
self.ExpyXB = np.exp(self.y * self.beta0 + self.yX.dot(self.betas))

def warm_start_from_beta0_betas_ExpyXB(self, beta0, betas, ExpyXB):
self.beta0, self.betas, self.ExpyXB = beta0, betas, ExpyXB

def get_beta0_betas(self):
return self.beta0, self.betas

def get_beta0_betas_ExpyXB(self):
return self.beta0, self.betas, self.ExpyXB

def get_original_beta0_betas(self):
return self.transform_coefficients_to_original_space(self.beta0, self.betas)

def transform_coefficients_to_original_space(self, beta0, betas):
original_betas = betas.copy()
original_betas[self.scaled_feature_indices] = original_betas[self.scaled_feature_indices]/self.X_norm[self.scaled_feature_indices]
original_beta0 = beta0 - np.dot(self.X_mean, original_betas)
return original_beta0, original_betas

def transform_coefficients_to_normalized_space(self, original_beta0, original_betas):
betas = original_betas.copy()
betas[self.scaled_feature_indices] = betas[self.scaled_feature_indices] * self.X_norm[self.scaled_feature_indices]
beta0 = original_beta0 + self.X_mean.dot(original_betas)
return beta0, betas

def get_grad_at_coord(self, ExpyXB, betas_j, yX_j, j):
# return -np.dot(1/(1+ExpyXB), self.yX[:, j]) + self.twoLambda2 * betas_j
# return -np.inner(1/(1+ExpyXB), self.yX[:, j]) + self.twoLambda2 * betas_j
# return -np.inner(np.reciprocal(1+ExpyXB), self.yX[:, j]) + self.twoLambda2 * betas_j
return -np.inner(np.reciprocal(1+ExpyXB), yX_j) + self.twoLambda2 * betas_j
# return -yX_j.dot(np.reciprocal(1+ExpyXB)) + self.twoLambda2 * betas_j

def update_ExpyXB(self, ExpyXB, yX_j, diff_betas_j):
ExpyXB *= np.exp(yX_j * diff_betas_j)

def optimize_1step_at_coord(self, ExpyXB, betas, yX_j, j):
# in-place modification, heck that ExpyXB and betas are passed by reference
prev_betas_j = betas[j]
current_betas_j = prev_betas_j
grad_at_j = self.get_grad_at_coord(ExpyXB, current_betas_j, yX_j, j)
step_at_j = grad_at_j / self.Lipschitz
current_betas_j = prev_betas_j - step_at_j
# current_betas_j = np.clip(current_betas_j, self.lbs[j], self.ubs[j])
current_betas_j = max(self.lbs[j], min(self.ubs[j], current_betas_j))
diff_betas_j = current_betas_j - prev_betas_j
betas[j] = current_betas_j

# ExpyXB *= np.exp(yX_j * diff_betas_j)
self.update_ExpyXB(ExpyXB, yX_j, diff_betas_j)

def finetune_on_current_support(self, ExpyXB, beta0, betas, total_CD_steps=100):

support = np.where(np.abs(betas) > 1e-9)[0]
grad_on_support = -self.yXT[support].dot(np.reciprocal(1+ExpyXB)) + self.twoLambda2 * betas[support]
abs_grad_on_support = np.abs(grad_on_support)
support = support[np.argsort(-abs_grad_on_support)]

loss_before = compute_logisticLoss_from_ExpyXB(ExpyXB) + self.lambda2 * betas[support].dot(betas[support])
for steps in range(total_CD_steps): # number of iterations for coordinate descent

if self.intercept:
grad_intercept = -np.reciprocal(1+ExpyXB).dot(self.y)
step_at_intercept = grad_intercept / (self.n * 0.25) # lipschitz constant is 0.25 at the intercept
beta0 = beta0 - step_at_intercept
ExpyXB *= np.exp(self.y * (-step_at_intercept))

for j in support:
self.optimize_1step_at_coord(ExpyXB, betas, self.yXT[j, :], j) # in-place modification on ExpyXB and betas

if steps % 10 == 0:
loss_after = compute_logisticLoss_from_ExpyXB(ExpyXB) + self.lambda2 * betas[support].dot(betas[support])
if abs(loss_before - loss_after)/loss_after < 1e-8:
# print("break after {} steps; support size is {}".format(steps, len(support)))
break
loss_before = loss_after

return ExpyXB, beta0, betas

def compute_yXB(self, beta0, betas):
return self.y*(beta0 + np.dot(self.X_normalized, betas))

Loading

0 comments on commit ef3e166

Please sign in to comment.