-
-
Notifications
You must be signed in to change notification settings - Fork 1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Column as Model: Add tests and some fixes
- Loading branch information
Showing
6 changed files
with
472 additions
and
52 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
import unittest | ||
from unittest.mock import patch | ||
|
||
import numpy as np | ||
|
||
from Orange.classification import ColumnLearner, ColumnClassifier | ||
from Orange.data import DiscreteVariable, ContinuousVariable, Domain, Table | ||
|
||
|
||
class ColumnTest(unittest.TestCase): | ||
@classmethod | ||
def setUpClass(cls): | ||
cls.domain = Domain([DiscreteVariable("d1", values=["a", "b"]), | ||
DiscreteVariable("d2", values=["c", "d"]), | ||
DiscreteVariable("d3", values=["d", "c"]), | ||
ContinuousVariable("c1"), | ||
ContinuousVariable("c2") | ||
], | ||
DiscreteVariable("cls", values=["c", "d"]), | ||
[DiscreteVariable("m1", values=["a", "b"]), | ||
DiscreteVariable("m2", values=["d"]), | ||
ContinuousVariable("c3")] | ||
) | ||
cls.data = Table.from_numpy( | ||
cls.domain, | ||
np.array([[0, 0, 0, 1, 0.5], | ||
[0, 1, 1, 0.25, -3], | ||
[1, 0, np.nan, np.nan, np.nan]]), | ||
np.array([0, 1, 1]), | ||
np.array([[0, 0, 2], | ||
[1, 0, 8], | ||
[np.nan, np.nan, 5]]) | ||
) | ||
|
||
@patch("Orange.classification.column.ColumnClassifier") | ||
def test_fit_storage(self, clsfr): | ||
learner = ColumnLearner(self.domain.class_var, self.domain["d2"]) | ||
self.assertEqual(learner.name, "column 'd2'") | ||
learner.fit_storage(self.data) | ||
clsfr.assert_called_with(self.domain.class_var, self.domain["d2"], None, None) | ||
|
||
learner = ColumnLearner(self.domain.class_var, self.domain["c3"]) | ||
learner.fit_storage(self.data) | ||
clsfr.assert_called_with(self.domain.class_var, self.domain["c3"], None, None) | ||
|
||
learner = ColumnLearner(self.domain.class_var, self.domain["c3"], 42, 3.5) | ||
self.assertEqual(learner.name, "column 'c3'") | ||
learner.fit_storage(self.data) | ||
clsfr.assert_called_with(self.domain.class_var, self.domain["c3"], 42, 3.5) | ||
|
||
def test_classifier_init_checks(self): | ||
cls = ColumnClassifier(self.domain.class_var, self.domain["d2"]) | ||
cls.name = "column 'd2'" | ||
|
||
cls = ColumnClassifier(self.domain.class_var, self.domain["d3"]) | ||
cls.name = "column 'd3'" | ||
|
||
cls = ColumnClassifier(self.domain.class_var, self.domain["c3"]) | ||
cls.name = "column 'c3'" | ||
|
||
self.assertRaises( | ||
ValueError, | ||
ColumnClassifier, | ||
self.domain.class_var, self.domain["d1"]) | ||
|
||
self.assertRaises( | ||
ValueError, | ||
ColumnClassifier, | ||
DiscreteVariable("x", values=("a", "b", "c")), self.domain["c3"]) | ||
|
||
def test_check_prob_range(self): | ||
self.assertTrue( | ||
ColumnClassifier.check_prob_range(np.array([0, 0.5, 1])) | ||
) | ||
self.assertTrue( | ||
ColumnClassifier.check_prob_range(np.array([0, 0.5, np.nan])) | ||
) | ||
self.assertFalse( | ||
ColumnClassifier.check_prob_range(np.array([0, 0.5, 1.5])) | ||
) | ||
self.assertFalse( | ||
ColumnClassifier.check_prob_range(np.array([0, 0.5, -1])) | ||
) | ||
|
||
def test_check_value_sets(self): | ||
d1, d2, d3, *_ = self.domain.attributes | ||
c = self.domain.class_var | ||
m2: DiscreteVariable = self.domain["m2"] | ||
self.assertFalse(ColumnClassifier.check_value_sets(c, d1)) | ||
self.assertTrue(ColumnClassifier.check_value_sets(c ,d2)) | ||
self.assertTrue(ColumnClassifier.check_value_sets(c, d3)) | ||
self.assertTrue(ColumnClassifier.check_value_sets(c, m2)) | ||
self.assertFalse(ColumnClassifier.check_value_sets(m2, c)) | ||
|
||
def test_predict_discrete(self): | ||
# Just copy | ||
model = ColumnClassifier(self.domain.class_var, self.domain["d2"]) | ||
self.assertEqual(model.name, "column 'd2'") | ||
classes, probs = model(self.data, model.ValueProbs) | ||
np.testing.assert_equal(classes, [0, 1, 0]) | ||
np.testing.assert_equal(probs, [[1, 0], [0, 1], [1, 0]]) | ||
|
||
# Values are not in the same order -> map | ||
model = ColumnClassifier(self.domain.class_var, self.domain["d3"]) | ||
classes, probs = model(self.data, model.ValueProbs) | ||
np.testing.assert_equal(classes, [1, 0, np.nan]) | ||
np.testing.assert_equal(probs, [[0, 1], [1, 0], [0.5, 0.5]]) | ||
|
||
# Not in the same order, and one is missing -> map | ||
model = ColumnClassifier(self.domain.class_var, self.domain["m2"]) | ||
classes, probs = model(self.data, model.ValueProbs) | ||
np.testing.assert_equal(classes, [1, 1, np.nan]) | ||
np.testing.assert_equal(probs, [[0, 1], [0, 1], [0.5, 0.5]]) | ||
|
||
# Non-binary class | ||
domain = Domain( | ||
self.domain.attributes, | ||
DiscreteVariable("cls", values=["a", "c", "b", "d", "e"])) | ||
data = Table.from_numpy(domain, self.data.X, self.data.Y) | ||
model = ColumnClassifier(domain.class_var, domain["d3"]) | ||
classes, probs = model(data, model.ValueProbs) | ||
np.testing.assert_equal(classes, [3, 1, np.nan]) | ||
np.testing.assert_almost_equal( | ||
probs, | ||
np.array([[0, 0, 0, 1, 0], | ||
[0, 1, 0, 0, 0], | ||
[0.2, 0.2, 0.2, 0.2, 0.2]])) | ||
|
||
def test_predict_as_direct_probs(self): | ||
model = ColumnClassifier(self.domain.class_var, self.domain["c1"]) | ||
self.assertEqual(model.name, "column 'c1'") | ||
classes, probs = model(self.data, model.ValueProbs) | ||
np.testing.assert_equal(classes, [1, 0, np.nan]) | ||
np.testing.assert_equal(probs, [[0, 1], [0.75, 0.25], [0.5, 0.5]]) | ||
|
||
model = ColumnClassifier(self.domain.class_var, self.domain["c2"]) | ||
self.assertRaises(ValueError, model, self.data) | ||
|
||
model = ColumnClassifier(self.domain.class_var, self.domain["c3"]) | ||
self.assertRaises(ValueError, model, self.data) | ||
|
||
def test_predict_with_logistic(self): | ||
model = ColumnClassifier( | ||
self.domain.class_var, self.domain["c1"], 0.5, 3) | ||
classes, probs = model(self.data, model.ValueProbs) | ||
np.testing.assert_equal(classes, [1, 0, np.nan]) | ||
np.testing.assert_almost_equal( | ||
probs[:, 1], [1 / (1 + np.exp(-3 * (1 - 0.5))), | ||
1 / (1 + np.exp(-3 * (0.25 - 0.5))), | ||
0.5]) | ||
np.testing.assert_equal(probs[:, 0], 1 - probs[:, 1]) | ||
|
||
model = ColumnClassifier( | ||
self.domain.class_var, self.domain["c2"], 0.5, 3) | ||
classes, probs = model(self.data, model.ValueProbs) | ||
np.testing.assert_equal(classes, [0, 0, np.nan]) | ||
np.testing.assert_almost_equal( | ||
probs[:, 1], [1 / (1 + np.exp(-3 * (0.5 - 0.5))), | ||
1 / (1 + np.exp(-3 * (-3 - 0.5))), | ||
0.5]) | ||
np.testing.assert_equal(probs[:, 0], 1 - probs[:, 1]) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.