Skip to content

Releases: benfred/implicit

v0.7.2

29 Sep 21:06
04de38d
Compare
Choose a tag to compare

Changes

🚀 Features

🧰 Maintenance

v0.7.1

25 Aug 17:45
Compare
Choose a tag to compare

Changes

🚀 Features

🐛 Bug Fixes

🧰 Maintenance

v0.7.0

13 Jun 05:27
Compare
Choose a tag to compare

Changes

🚀 Features

🐛 Bug Fixes

🧰 Maintenance

v0.6.2

11 Dec 00:47
Compare
Choose a tag to compare

Changes

🚀 Features

🐛 Bug Fixes

📄 Documentation

🧰 Maintenance

v0.6.1

31 Aug 20:59
Compare
Choose a tag to compare

Changes

🚀 Features

  • Tweak callback API @benfred (#612)
  • Allow GPU models to train on sparse matrices that exceed the size of available GPU memory @benfred (#605)
  • Fit callback in BPR model @apat1n (#590)

🐛 Bug Fixes

  • Handle more than 2**31 parameters on GPU models @benfred (#599)
  • Fix recalculate_item / recalculate_user on the GPU @benfred (#598)

📄 Documentation

v0.6.0

11 Jul 17:26
Compare
Choose a tag to compare

Changes

🚀 Features

  • Add an alpha parameter for the ALS models @benfred (#581)
  • Use num_threads for batch recommendations in MF models @benfred (#562)
  • Add save/load functions for models @benfred (#552)
  • Publish binary wheels to PyPi using cibuildwheel @benfred (#546)

🐛 Bug Fixes

  • Fix default argument typo in benchmark_als.py @atakanfilgoz (#585)
  • Fix save/load for models that haven't been fit @benfred (#577)
  • Warn on non-csr input passed to model.fit @benfred (#578)
  • Fix partial_fit_items bug with only growing by a single item @benfred (#563)

🏎💨 Performance Improvements

  • Only call sort_indices when verifying negative samples @benfred (#583)

📄 Documentation

  • Update link to dataset in lastfm example script @benfred (#573)

🧰 Maintenance

v0.5.0

28 Jan 06:10
Compare
Choose a tag to compare

v0.5.0

Breaking API Changes

The API for implicit has substantially changed in v0.5.0 - and any code written for the previous
API will need to be rewritten:

  • Change model.fit to take a user_items sparse matrix #484
  • Return numpy arrays from recommend methods #482
  • Don't require empty rows in user_items and item_users parameters #526
  • Unify API for rank_items/recommend/recommend_all #489

Performance Improvements

  • Speedup evaluation by using batch recommend functions #520
  • Use FAISS for GPU inference #506
  • Multithreaded speedups for CPU models #517
  • Use thrust::binary_search to verify negative samples on GPU #524
  • Release GIL on GPU calls #528

New Features

  • Add incremental retraining support for ALS models #527
  • Add filtering for similar_items and similar_users #488
  • Add support for recalculate_users/items on the GPU #515
  • Add methods for converting MF models to/from gpu #521
  • Add a tutorial notebook for the lastfm example #529
  • Approximate nearest neighbour for BPR/LMF and GPU models #487
  • Dynamically detect CUDA availability #174