-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' of github.com:ben-domingue/irw into main
- Loading branch information
Showing
8 changed files
with
359 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
Data: https://osf.io/jqzbx/ | ||
Paper: | ||
library(haven) | ||
library(dplyr) | ||
library(tidyr) | ||
library(openxlsx) | ||
library(readr) | ||
library(readxl) | ||
library(sas7bdat) | ||
|
||
remove_na <- function(df) { | ||
df <- df[!(rowSums(is.na(df[, -which(names(df) %in% c("id"))])) == (ncol(df) - 1)), ] | ||
return(df) | ||
} | ||
|
||
|
||
preStudy_df <- read_sav("CPS Pre-Study.sav") | ||
study1 <- read_sav("CPS Study 1.sav") | ||
study2 <- read_sav("CPS Study 2.sav") | ||
|
||
preStudy_df [] <- lapply(preStudy_df, function(col) { # Remove column labels for each column | ||
attr(col, "label") <- NULL | ||
return(col) | ||
}) | ||
|
||
study1[] <- lapply(study1, function(col) { # Remove column labels for each column | ||
attr(col, "label") <- NULL | ||
return(col) | ||
}) | ||
|
||
study2[] <- lapply(study2, function(col) { # Remove column labels for each column | ||
attr(col, "label") <- NULL | ||
return(col) | ||
}) | ||
|
||
preStudy_df <- preStudy_df|> | ||
rename(id=PID) | ||
study1 <- study1|> | ||
rename(id=PID) | ||
study2 <- study2|> | ||
rename(id=PID) | ||
|
||
# ---------- Process CPS Datasets ---------- | ||
CPS_PRE_df <- preStudy_df |> | ||
select(starts_with("CPS"), id) | ||
colnames(CPS_PRE_df) <- c("CPS_BS1", "CPS_BS2", "CPS_BS3", "CPS_BS4", "CPS_GD1", "CPS_GD2", "CPS_GD3", "CPS_GD4", "CPS_M1", "CPS_M2", "CPS_M3", "CPS_M4", "id") | ||
CPS_PRE_df <- remove_na(CPS_PRE_df) | ||
CPS_PRE_df <- pivot_longer(CPS_PRE_df, cols=-c(id), names_to="item", values_to="resp") | ||
|
||
CPS_Study1_df <- study1 |> | ||
select(starts_with("CPS"), id) | ||
CPS_Study1_df <- remove_na(CPS_Study1_df) | ||
CPS_Study1_df <- pivot_longer(CPS_Study1_df, cols=-c(id), names_to="item", values_to="resp") | ||
|
||
CPS_Study2_df <- study2 |> | ||
select(starts_with("CPS"), id) | ||
CPS_Study2_df <- remove_na(CPS_Study2_df) | ||
CPS_Study2_df <- CPS_Study2_df |> | ||
select(-CPS, -CPS_M, -CPS_GD, -CPS_BTS) | ||
CPS_Study2_df <- pivot_longer(CPS_Study2_df, cols=-c(id), names_to="item", values_to="resp") | ||
|
||
|
||
CPS_PRE_df $ group <- "pre_study" | ||
CPS_Study1_df $ group <- "study1" | ||
CPS_Study2_df $ group <- "study2" | ||
|
||
CPS_df <- rbind(CPS_PRE_df,CPS_Study1_df,CPS_Study2_df ) | ||
|
||
save(CPS_df, file="ALSECYPIAMH_WU_2022_CPS.Rdata") | ||
write.csv(CPS_df, "ALSECYPIAMH_WU_2022_CPS.csv", row.names=FALSE) | ||
|
||
# ---------- Process SDQ Datasets ---------- | ||
SDQ_df <- study2 |> | ||
select(starts_with("SDQ"), id) | ||
SDQ_df <- remove_na(SDQ_df) | ||
SDQ_df <- pivot_longer(SDQ_df, cols=-c(id), names_to="item", values_to="resp") | ||
|
||
save(SDQ_df, file="ALSECYPIAMH_WU_2022_SDQ.Rdata") | ||
write.csv(SDQ_df, "ALSECYPIAMH_WU_2022_SDQ.csv", row.names=FALSE) | ||
|
||
# ---------- Process SWEMBS Datasets ---------- | ||
SWEMWBS_df <- study2 |> | ||
select(starts_with("SWEMWBS"), id, -SWEMWBS) | ||
SWEMWBS_df <- remove_na(SWEMWBS_df) | ||
SWEMWBS_df <- pivot_longer(SWEMWBS_df, cols=-c(id), names_to="item", values_to="resp") | ||
|
||
save(SWEMWBS_df, file="ALSECYPIAMH_WU_2022_SWEMWBS.Rdata") | ||
write.csv(SWEMWBS_df, "ALSECYPIAMH_WU_2022_SWEMWBS.csv", row.names=FALSE) | ||
|
||
# ---------- Process SWLS Datasets ---------- | ||
SWLS_df <- study2 |> | ||
select(starts_with("SWLS"), id, -SWLS) | ||
SWLS_df <- remove_na(SWLS_df) | ||
SWLS_df <- pivot_longer(SWLS_df, cols=-c(id), names_to="item", values_to="resp") | ||
|
||
save(SWLS_df, file="ALSECYPIAMH_WU_2022_SWLS.Rdata") | ||
write.csv(SWLS_df, "ALSECYPIAMH_WU_2022_SWLS.csv", row.names=FALSE) | ||
|
||
# ---------- Process PEI Datasets ---------- | ||
PEI_df <- study2 |> | ||
select(starts_with("PEI"), id) | ||
PEI_df <- remove_na(PEI_df) | ||
PEI_df <- PEI_df |> | ||
select(-PEI) | ||
PEI_df <- pivot_longer(PEI_df, cols=-c(id), names_to="item", values_to="resp") | ||
|
||
save(PEI_df, file="ALSECYPIAMH_WU_2022_PEI.Rdata") | ||
write.csv(PEI_df, "ALSECYPIAMH_WU_2022_PEI.csv", row.names=FALSE) | ||
|
||
# ---------- Process NEI Datasets ---------- | ||
NEI_df <- study2 |> | ||
select(starts_with("NEI"), id) | ||
NEI_df <- remove_na(NEI_df) | ||
NEI_df <- NEI_df |> | ||
select(-NEI) | ||
NEI_df <- pivot_longer(NEI_df, cols=-c(id), names_to="item", values_to="resp") | ||
|
||
save(NEI_df, file="ALSECYPIAMH_WU_2022_NEI.Rdata") | ||
write.csv(NEI_df, "ALSECYPIAMH_WU_2022_NEI.csv", row.names=FALSE) | ||
|
||
# ---------- Process PHQ Datasets ---------- | ||
PHQ_df <- study2 |> | ||
select(starts_with("PHQ"), id) | ||
PHQ_df <- remove_na(PHQ_df) | ||
PHQ_df <- pivot_longer(PHQ_df, cols=-c(id), names_to="item", values_to="resp") | ||
|
||
save(PHQ_df, file="ALSECYPIAMH_WU_2022_PHQ.Rdata") | ||
write.csv(PHQ_df, "ALSECYPIAMH_WU_2022_PHQ.csv", row.names=FALSE) | ||
|
||
# ---------- Process Empathy Datasets ---------- | ||
Empathy_df <- study2 |> | ||
select(starts_with("Empathy"), id, -ends_with("r"),-Empathy) | ||
Empathy_df <- remove_na(Empathy_df) | ||
Empathy_df <- pivot_longer(Empathy_df, cols=-c(id), names_to="item", values_to="resp") | ||
|
||
save(Empathy_df, file="ALSECYPIAMH_WU_2022_Empathy.Rdata") | ||
write.csv(Empathy_df, "ALSECYPIAMH_WU_2022_Empathy.csv", row.names=FALSE) | ||
|
||
# ---------- Process MIL Datasets ---------- | ||
MIL_df <- study2 |> | ||
select(starts_with("MIL"), id) | ||
MIL_df <- remove_na(MIL_df) | ||
MIL_df <- pivot_longer(MIL_df, cols=-c(id), names_to="item", values_to="resp") | ||
|
||
save(MIL_df, file="ALSECYPIAMH_WU_2022_MIL.Rdata") | ||
write.csv(MIL_df, "ALSECYPIAMH_WU_2022_MIL.csv", row.names=FALSE) | ||
|
||
# ---------- Process PIL Datasets ---------- | ||
PIL_df <- study2 |> | ||
select(starts_with("PIL"), id) | ||
PIL_df <- remove_na(PIL_df) | ||
PIL_df <- PIL_df |> | ||
select(-PIL) | ||
PIL_df <- pivot_longer(PIL_df, cols=-c(id), names_to="item", values_to="resp") | ||
|
||
save(PIL_df, file="ALSECYPIAMH_WU_2022_PIL.Rdata") | ||
write.csv(PIL_df, "ALSECYPIAMH_WU_2022_PIL.csv", row.names=FALSE) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
# Data: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/YRLEAY | ||
library(haven) | ||
library(dplyr) | ||
library(tidyr) | ||
library(openxlsx) | ||
library(readxl) | ||
|
||
df <- read_excel("no_Names_coding-0623_forupload.xlsx", sheet = "data") | ||
df$id <- seq_len(nrow(df)) | ||
df <- df |> | ||
select(id, starts_with("item")) | ||
df[df == 9999] <- NA | ||
df <- df[!apply(df[, -which(names(df) == "id")], 1, function(row) all(is.na(row))), ] | ||
df <- pivot_longer(df, col=-id, values_to="resp", names_to="item") | ||
|
||
save(df, file="CHEXI_Lin_2019.Rdata") | ||
write.csv(df, "CHEXI_Lin_2019.csv", row.names=FALSE) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
# Data: https://github.com/scrosseye/ELLIPSE-Corpus | ||
library(haven) | ||
library(dplyr) | ||
library(tidyr) | ||
|
||
df <- read.csv("ellipsis_raw_rater_scores_anon_all_essay.csv") | ||
df <- df |> | ||
rename(id=Filename) |> | ||
select(-Text) | ||
df1 <- df |> | ||
select(id, ends_with("1")) |> | ||
df2 <- df |> | ||
select(id, ends_with("2")) | ||
|
||
colnames(df1) <- ifelse( | ||
colnames(df1) == "id", | ||
colnames(df1), | ||
gsub("_1$", "", colnames(df1)) | ||
) | ||
colnames(df2) <- ifelse( | ||
colnames(df2) == "id", | ||
colnames(df2), | ||
gsub("_2$", "", colnames(df2)) | ||
) | ||
|
||
df1 <- df1 |> | ||
rename(rater=Rater) | ||
df2 <- df2 |> | ||
rename(rater=Rater) | ||
|
||
df1 <- pivot_longer(df1, cols=-c(id, rater), names_to="item", values_to="resp") | ||
df2 <- pivot_longer(df2, cols=-c(id, rater), names_to="item", values_to="resp") | ||
|
||
final_df <- rbind(df1, df2) | ||
|
||
save(final_df, file="Ellipse_Corssley_2024.Rdata") | ||
write.csv(final_df, "Ellipse_Corssley_2024.csv", row.names=FALSE) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
# Data: https://osf.io/5vhju/ | ||
# Paper: | ||
library(haven) | ||
library(dplyr) | ||
library(tidyr) | ||
library(openxlsx) | ||
|
||
df <- read.xlsx("MGSIS-5 and GCLQ Data.xlsx") | ||
df <- df[, colSums(!is.na(df)) > 0] | ||
df$id <- seq_len(nrow(df)) | ||
df <- df |> | ||
select(-Start.time, -Completion.time, -Email, -`Are.you.a.resident.of.the.UK?`, -`How.old.are.you?`) | ||
df <- df[!apply(df[, -which(names(df) == "id")], 1, function(row) all(is.na(row))), ] | ||
|
||
mgsis_df <- df |> | ||
select(id, starts_with("I"), `Do.you.have.a.medical.condition.which.affects.your.lower.body.or.could.impact.how.you.feel.about.your.genitals?`) |> | ||
rename(cov_medical_condition=`Do.you.have.a.medical.condition.which.affects.your.lower.body.or.could.impact.how.you.feel.about.your.genitals?`) | ||
GCLQ_df <- df |> | ||
select(-starts_with("I"), id) |> | ||
rename(cov_medical_condition=`Do.you.have.a.medical.condition.which.affects.your.lower.body.or.could.impact.how.you.feel.about.your.genitals?`) | ||
|
||
GCLQ_df[] <- lapply(GCLQ_df, function(x) ifelse(x == "Yes", 1, ifelse(x == "No", 0, x))) | ||
GCLQ_df <- GCLQ_df %>% | ||
mutate(across(everything(), ~ as.numeric(as.character(.)))) | ||
GCLQ_df <- pivot_longer(GCLQ_df, cols=-c(id, cov_medical_condition), names_to="item", values_to="resp") | ||
|
||
likert_map <- c( | ||
"Strongly Disagree" = 1, | ||
"Disagree" = 2, | ||
"Agree" = 3, | ||
"Strongly Agree" = 4 | ||
) | ||
|
||
mgsis_df <- pivot_longer(mgsis_df, cols=-c(id, cov_medical_condition), names_to="item", values_to="resp") | ||
mgsis_df$resp <- likert_map[mgsis_df$resp] | ||
|
||
final_df <- rbind(mgsis_df, GCLQ_df) | ||
final_df$cov_medical_condition <- as.numeric(lapply(final_df$cov_medical_condition, function(x) ifelse(x == "Yes", 1, ifelse(x == "No", 0, x)))) | ||
|
||
save(final_df, file="MGSISGCLQ_Hollyhead_2018.Rdata") | ||
write.csv(final_df, "MGSISGCLQ_Hollyhead_2018.csv", row.names=FALSE) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
# Paper: https://www.cambridge.org/core/journals/british-journal-of-political-science/article/measuring-media-freedom-an-item-response-theory-analysis-of-existing-indicators/4A6D5AE5E6F4E78D0642BFF882C1FBF6 | ||
# Data: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/ENOEQS | ||
# Issue: https://github.com/ben-domingue/irw/issues/599 | ||
|
||
library(haven) | ||
library(dplyr) | ||
library(tidyr) | ||
|
||
df <- read.csv("irt_full.csv") | ||
df$id <- seq_len(nrow(df)) | ||
df <- df |> | ||
select(-cow, -year) | ||
df <- pivot_longer(df, cols=-id, names_to="item", values_to="resp") | ||
df <- na.omit(df) | ||
|
||
save(df, file="MMF_Solis_2020.Rdata") | ||
write.csv(df, "MMF_Solis_2020.csv", row.names=FALSE) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
# Poster: https://www.researchgate.net/profile/Rossella-Caliciuri/publication/382182050_Psychometric_Properties_of_the_Scientific_Reasoning_Scale/links/6690f2a1b15ba55907539c5a/Psychometric-Properties-of-the-Scientific-Reasoning-Scale.pdf | ||
# Data: https://osf.io/jk9dp/ | ||
library(haven) | ||
library(dplyr) | ||
library(tidyr) | ||
library(openxlsx) | ||
|
||
df <- read_sav("3. CFA&IRT_SRS (n=337).sav") | ||
df <- df |> | ||
select(ID, starts_with("SRS")) |> | ||
rename(id=ID) | ||
df <- pivot_longer(df, cols=-id, names_to = "item", values_to="resp") | ||
|
||
save(df, file="PPSRS_Caliciuri_2024.Rdata") | ||
write.csv(df, "PPSRS_Caliciuri_2024.csv", row.names=FALSE) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
# Paper: https://www.sciencedirect.com/science/article/pii/S0165032719302046 | ||
# Data: https://osf.io/c4v7g/ | ||
library(haven) | ||
library(dplyr) | ||
library(tidyr) | ||
library(openxlsx) | ||
|
||
df <- read.table("bpses_pre_for_factor.dat", header = TRUE, sep = ",", stringsAsFactors = FALSE) | ||
colnames(df) <- paste0("MBDS", 1:22) | ||
df$id <- seq_len(nrow(df)) | ||
df <- pivot_longer(df, cols=-id, values_to = "resp", names_to = "item") | ||
df$resp[df$resp == 999] <- NA | ||
|
||
save(df, file="SBD_Smith_2020.Rdata") | ||
write.csv(df, "SBD_Smith_2020.csv", row.names=FALSE) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
# Data: https://osf.io/wsjkb/ | ||
# Paper: https://link.springer.com/article/10.1007/s41811-024-00214-3 | ||
library(haven) | ||
library(dplyr) | ||
library(tidyr) | ||
|
||
ea_df <- read_sav("SCS EA dataset.sav") | ||
korea_df <- read_sav("SCS Korean dataset.sav") | ||
|
||
ea_df <- ea_df |> | ||
rename(id=ID) | ||
korea_df <- korea_df |> | ||
rename(id=ID) | ||
|
||
# ---------- Process SCS Dataset ---------- | ||
ea_scs <- ea_df |> | ||
select(id, starts_with("SCS"), -starts_with("SCS_Short")) | ||
ea_scs <- pivot_longer(ea_scs, cols=-id, names_to="item", values_to="resp") | ||
ea_scs$group <- "US" | ||
|
||
korea_scs <- korea_df |> | ||
select(id, starts_with("SCS")) | ||
korea_scs <- pivot_longer(korea_scs, cols=-id, names_to="item", values_to="resp") | ||
korea_scs$group <- "Korea" | ||
|
||
scs_df <- rbind(ea_scs, korea_scs) | ||
|
||
save(scs_df, file="SCS_Suh_2023_SCS.Rdata") | ||
write.csv(scs_df, "SCS_Suh_2023_SCS.csv", row.names=FALSE) | ||
|
||
# ---------- Process SIAPS Dataset ---------- | ||
ea_siaps <- ea_df |> | ||
select(id, starts_with("SIAPS"), -ends_with("F2"), -ends_with("F1")) | ||
ea_siaps[ea_siaps == 999] <- NA | ||
ea_siaps <- pivot_longer(ea_siaps, cols=-id, names_to="item", values_to="resp") | ||
|
||
save(ea_siaps, file="SCS_Suh_2023_SIAPS.Rdata") | ||
write.csv(ea_siaps, "SCS_Suh_2023_SIAPS.csv", row.names=FALSE) | ||
|
||
# ---------- Process BFNE Dataset ---------- | ||
ea_bfne <- ea_df |> | ||
select(id, starts_with("BFNE"), -ends_with("T")) | ||
ea_bfne[ea_bfne == 999] <- NA | ||
ea_bfne <- pivot_longer(ea_bfne, cols=-id, names_to="item", values_to="resp") | ||
ea_bfne <- ea_bfne[!is.na(ea_bfne$resp),] | ||
ea_bfne$group <- "US" | ||
|
||
korea_bfne <- korea_df |> | ||
select(id, starts_with("BFNE"), -BFNE) | ||
korea_bfne[korea_bfne == 999] <- NA | ||
korea_bfne[korea_bfne == 0] <- NA | ||
korea_bfne <- pivot_longer(korea_bfne, cols=-id, names_to="item", values_to="resp") | ||
korea_bfne <- korea_bfne[!is.na(korea_bfne$resp),] | ||
korea_bfne$group <- "Korea" | ||
|
||
bfne_df <- rbind(korea_bfne, ea_bfne) | ||
|
||
save(bfne_df, file="SCS_Suh_2023_BFNE.Rdata") | ||
write.csv(bfne_df, "SCS_Suh_2023_BFNE.csv", row.names=FALSE) |