forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Supported type: float. int32_t, uint32_t, bool. Case where_broadcast.jsonc is not enabled due to microsoft#17405.
- Loading branch information
Showing
9 changed files
with
458 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
// Copyright (c) Microsoft Corporation. All rights reserved. | ||
// Licensed under the MIT License. | ||
|
||
import {DataType} from '../../../wasm-common'; | ||
import {TensorView} from '../../tensor-view'; | ||
import {BroadcastUtil, ShapeUtil} from '../../util'; | ||
import {ComputeContext, GpuDataType, ProgramInfo, ProgramInfoLoader, ProgramMetadata} from '../types'; | ||
import {createBroadcastHelper, inputVariable, outputVariable, ShaderHelper} from './common'; | ||
|
||
const createWhereOpProgramShader = | ||
(shaderHelper: ShaderHelper, inputs: readonly TensorView[], dimsOutput: readonly number[], isBroadcast: boolean, | ||
typeOutput: number) => { | ||
const outputSize = ShapeUtil.size(dimsOutput); | ||
const vecSize = Math.ceil(outputSize / 4); | ||
|
||
const output = outputVariable('outputData', typeOutput, dimsOutput, 4); | ||
const a = inputVariable('aData', inputs[1].dataType, inputs[1].dims, 4); | ||
const b = inputVariable('bData', inputs[2].dataType, inputs[2].dims, 4); | ||
const c = inputVariable('cData', inputs[0].dataType, inputs[0].dims, 4); | ||
const broadcastImpl = isBroadcast ? createBroadcastHelper([a, b, c], output).broadcastIndicesToOffset() : ''; | ||
|
||
let assignment: string; | ||
const expression = (a: string, b: string, c: string) => `select(${b}, ${a}, ${c})`; | ||
if (!isBroadcast) { | ||
assignment = output.setByOffset( | ||
'global_idx', | ||
expression(a.getByOffset('global_idx'), b.getByOffset('global_idx'), c.getByOffset('global_idx'))); | ||
} else { | ||
const singleAssignment = (resStr: string, x: number, typeCast = '') => { | ||
const expressionA = `aData[indexA${x}][componentA${x}]`; | ||
const expressionB = `bData[indexB${x}][componentB${x}]`; | ||
// eslint-disable-next-line no-bitwise | ||
const expressionC = `bool(cData[indexC${x}] & ${0xff000000 >>> ((3 - x) * 8)}u)`; | ||
return ` | ||
let outputIndices${x} = ${output.offsetToIndices(`global_idx * 4u + ${x}u`)}; | ||
let offsetA${x} = broadcastIndicesToOffsetA(outputIndices${x}); | ||
let offsetB${x} = broadcastIndicesToOffsetB(outputIndices${x}); | ||
let offsetC${x} = broadcastIndicesToOffsetC(outputIndices${x}); | ||
let indexA${x} = offsetA${x} / 4u; | ||
let indexB${x} = offsetB${x} / 4u; | ||
let indexC${x} = offsetC${x} / 4u; | ||
let componentA${x} = offsetA${x} % 4u; | ||
let componentB${x} = offsetB${x} % 4u; | ||
${resStr}[${x}] = ${typeCast}(${expression(expressionA, expressionB, expressionC)}); | ||
`; | ||
}; | ||
if (typeOutput === DataType.bool) { | ||
assignment = ` | ||
var data = vec4<u32>(0); | ||
${singleAssignment('data', 0, 'u32')} | ||
${singleAssignment('data', 1, 'u32')} | ||
${singleAssignment('data', 2, 'u32')} | ||
${singleAssignment('data', 3, 'u32')} | ||
outputData[global_idx] = dot(vec4<u32>(0x1, 0x100, 0x10000, 0x1000000), vec4<u32>(data));`; | ||
} else { | ||
assignment = ` | ||
${singleAssignment('outputData[global_idx]', 0)} | ||
${singleAssignment('outputData[global_idx]', 1)} | ||
${singleAssignment('outputData[global_idx]', 2)} | ||
${singleAssignment('outputData[global_idx]', 3)} | ||
`; | ||
} | ||
} | ||
|
||
return ` | ||
${shaderHelper.declareVariables(c, a, b, output)} | ||
${broadcastImpl} | ||
${shaderHelper.mainStart()} | ||
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes(vecSize)} | ||
${assignment} | ||
}`; | ||
}; | ||
|
||
const createWhereOpProgramInfo = (metadata: ProgramMetadata, inputs: readonly TensorView[]): ProgramInfo => { | ||
const dimsA = inputs[1].dims; | ||
const dimsB = inputs[2].dims; | ||
const dimsC = inputs[0].dims; | ||
const outputDataType = inputs[1].dataType; | ||
|
||
const isBroadcast = !(ShapeUtil.areEqual(dimsA, dimsB) && ShapeUtil.areEqual(dimsB, dimsC)); | ||
let outputShape = dimsA; | ||
let outputSize = ShapeUtil.size(dimsA); | ||
// TODO: deal with zero-sized tensors (eg. dims=[1,0]) | ||
|
||
if (isBroadcast) { | ||
const calculatedShape = BroadcastUtil.calcShape(BroadcastUtil.calcShape(dimsA, dimsB, false)!, dimsC, false); | ||
if (!calculatedShape) { | ||
throw new Error('Can\'t perform where op on the given tensors'); | ||
} | ||
outputShape = calculatedShape; | ||
outputSize = ShapeUtil.size(outputShape); | ||
} | ||
|
||
return { | ||
...metadata, | ||
getShaderSource: (shaderHelper) => | ||
createWhereOpProgramShader(shaderHelper, inputs, outputShape, isBroadcast, outputDataType), | ||
outputs: [{dims: outputShape, dataType: outputDataType, gpuDataType: GpuDataType.default}], | ||
dispatchGroup: () => ({x: Math.ceil(outputSize / 64 /* workgroup size */ / (isBroadcast ? 1 : 4) /* vec size */)}) | ||
}; | ||
}; | ||
|
||
const createWhereOpProgramInfoLoader = (inputs: readonly TensorView[], name: string): ProgramInfoLoader => { | ||
const inputTypes = [GpuDataType.default, GpuDataType.default, GpuDataType.default]; | ||
const metadata: ProgramMetadata = {name, inputTypes}; | ||
return {...metadata, get: () => createWhereOpProgramInfo(metadata, inputs)}; | ||
}; | ||
|
||
export const where = (context: ComputeContext): void => { | ||
context.compute(createWhereOpProgramInfoLoader(context.inputs, 'Where')); | ||
}; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
[ | ||
{ | ||
"name": "Where with no attributes", | ||
"operator": "Where", | ||
"attributes": [], | ||
"cases": [ | ||
{ | ||
"name": "T[3] T[3] T[3] float32 T[3] ", | ||
"inputs": [ | ||
{ | ||
"data": [true, false, true, false, true, false, true, false], | ||
"dims": [8], | ||
"type": "bool" | ||
}, | ||
{ | ||
"data": [4.0, 8.0, 7.0, 2.0, 4.0, 8.0, 7.0, 1.0], | ||
"dims": [8], | ||
"type": "float32" | ||
}, | ||
{ | ||
"data": [1.0, 3.0, 9.0, 6.0, 1.0, 3.0, 9.0, 2.0], | ||
"dims": [8], | ||
"type": "float32" | ||
} | ||
], | ||
"outputs": [ | ||
{ | ||
"data": [4.0, 3.0, 7.0, 6.0, 4.0, 3.0, 7.0, 2.0], | ||
"dims": [8], | ||
"type": "float32" | ||
} | ||
] | ||
} | ||
] | ||
}, | ||
{ | ||
"name": "Where with no attributes", | ||
"operator": "Where", | ||
"attributes": [], | ||
"cases": [ | ||
{ | ||
"name": "T[3] T[3] T[3] int32 T[3] ", | ||
"inputs": [ | ||
{ | ||
"data": [true, false, true, false, true, false, true, false], | ||
"dims": [8], | ||
"type": "bool" | ||
}, | ||
{ | ||
"data": [4, 8, 7, 2, 4, 8, 7, 1], | ||
"dims": [8], | ||
"type": "int32" | ||
}, | ||
{ | ||
"data": [1, 3, 9, 6, 1, 3, 9, 2], | ||
"dims": [8], | ||
"type": "int32" | ||
} | ||
], | ||
"outputs": [ | ||
{ | ||
"data": [4, 3, 7, 6, 4, 3, 7, 2], | ||
"dims": [8], | ||
"type": "int32" | ||
} | ||
] | ||
} | ||
] | ||
}, | ||
{ | ||
"name": "Where with no attributes", | ||
"operator": "Where", | ||
"attributes": [], | ||
"cases": [ | ||
{ | ||
"name": "T[3] T[3] T[3] uint32 T[3] ", | ||
"inputs": [ | ||
{ | ||
"data": [true, false, true, false, true, false, true, false], | ||
"dims": [8], | ||
"type": "bool" | ||
}, | ||
{ | ||
"data": [4, 8, 7, 2, 4, 8, 7, 1], | ||
"dims": [8], | ||
"type": "uint32" | ||
}, | ||
{ | ||
"data": [1, 4294967295, 9, 6, 1, 3, 9, 2], | ||
"dims": [8], | ||
"type": "uint32" | ||
} | ||
], | ||
"outputs": [ | ||
{ | ||
"data": [4, 4294967295, 7, 6, 4, 3, 7, 2], | ||
"dims": [8], | ||
"type": "uint32" | ||
} | ||
] | ||
} | ||
] | ||
}, | ||
{ | ||
"name": "Where with no attributes", | ||
"operator": "Where", | ||
"attributes": [], | ||
"cases": [ | ||
{ | ||
"name": "T[3] T[3] T[3] bool T[3] ", | ||
"inputs": [ | ||
{ | ||
"data": [true, false, true, false, true, false, true, false], | ||
"dims": [8], | ||
"type": "bool" | ||
}, | ||
{ | ||
"data": [true, true, true, true, true, true, true, true], | ||
"dims": [8], | ||
"type": "float32" | ||
}, | ||
{ | ||
"data": [true, false, true, false, true, false, true, false], | ||
"dims": [8], | ||
"type": "float32" | ||
} | ||
], | ||
"outputs": [ | ||
{ | ||
"data": [true, false, true, false, true, false, true, false], | ||
"dims": [8], | ||
"type": "float32" | ||
} | ||
] | ||
} | ||
] | ||
}, | ||
{ | ||
"name": "Where with no attributes", | ||
"operator": "Where", | ||
"attributes": [], | ||
"cases": [ | ||
{ | ||
"name": "T[3 3] T[3 3] T[1] float32 broadcast", | ||
"inputs": [ | ||
{ | ||
"data": [true, true, true, true, true, false, false, false, false], | ||
"dims": [3, 3], | ||
"type": "bool" | ||
}, | ||
{ | ||
"data": [0, 1, 2, 3, 4, 5, 6, 7, 8], | ||
"dims": [3, 3], | ||
"type": "float32" | ||
}, | ||
{ | ||
"data": [-1.0], | ||
"dims": [1], | ||
"type": "float32" | ||
} | ||
], | ||
"outputs": [ | ||
{ | ||
"data": [0, 1, 2, 3, 4, -1, -1, -1, -1], | ||
"dims": [3, 3], | ||
"type": "float32" | ||
} | ||
] | ||
} | ||
] | ||
} | ||
] |
Oops, something went wrong.