forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
367 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
// Copyright (c) Microsoft Corporation. All rights reserved. | ||
// Licensed under the MIT License. | ||
|
||
import { DataType } from '../../../wasm-common'; | ||
import { TensorView } from '../../tensor-view'; | ||
import { ShapeUtil } from '../../util'; | ||
import { AttributeWithCacheKey } from '../attribute-with-cache-key'; | ||
import { ComputeContext, ProgramInputTensorInfoDependency, ProgramUniform } from '../types'; | ||
|
||
import { createTensorShapeVariables, inputVariable, outputVariable, ShaderHelper, UniformsArrayType } from './common'; | ||
|
||
export interface GatherNDAttributes extends AttributeWithCacheKey { | ||
readonly batchDims: number; | ||
} | ||
|
||
const computeSliceOffsetsKernel = ( | ||
context: ComputeContext, | ||
indicesData: TensorView, | ||
sizesFromSliceDimsData: number[], | ||
batchDims: number, | ||
inputDims: readonly number[], | ||
numSlices: number, | ||
numSlicesPerBatch: number, | ||
inputBatchStride: number, | ||
numSliceDims: number, | ||
) => { | ||
const inputDependencies: ProgramInputTensorInfoDependency[] = ['type']; | ||
const programUniforms: ProgramUniform[] = [ | ||
{ type: DataType.uint32, data: numSlices }, | ||
{ type: DataType.uint32, data: batchDims }, | ||
{ type: DataType.uint32, data: inputDims }, | ||
{ type: DataType.uint32, data: sizesFromSliceDimsData }, | ||
{ type: DataType.uint32, data: numSlicesPerBatch }, | ||
{ type: DataType.uint32, data: inputBatchStride }, | ||
{ type: DataType.uint32, data: numSliceDims }, | ||
]; | ||
|
||
const outputShape = [numSlices]; | ||
programUniforms.push(...createTensorShapeVariables(indicesData.dims, outputShape)); | ||
|
||
const getShaderSource = (shaderHelper: ShaderHelper) => { | ||
const indices = inputVariable('indices_data', indicesData.dataType, indicesData.dims.length); | ||
const output = outputVariable('input_slice_offsets_data', indicesData.dataType, 1, 1); | ||
const variables = [indices, output]; | ||
const uniforms: UniformsArrayType = [ | ||
{ name: 'output_size', type: 'u32' }, | ||
{ name: 'batch_dims', type: 'u32' }, | ||
{ name: 'input_dims', type: 'u32', length: inputDims.length }, | ||
{ name: 'sizes_from_slice_dims_data', type: 'u32', length: sizesFromSliceDimsData.length }, | ||
{ name: 'num_slices_per_batch', type: 'u32' }, | ||
{ name: 'input_batch_stride', type: 'u32' }, | ||
{ name: 'num_slice_dims', type: 'u32' }, | ||
]; | ||
return ` | ||
${shaderHelper.registerUniforms(uniforms).declareVariables(...variables)} | ||
${shaderHelper.mainStart()} | ||
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.output_size')} | ||
let batch_idx = global_idx / uniforms.num_slices_per_batch; | ||
let base_offset = batch_idx * uniforms.input_batch_stride; | ||
let slice_indices_base_offset = global_idx * uniforms.num_slice_dims; | ||
var relative_slice_offset = 0; | ||
for (var dim_idx = 0u; dim_idx < uniforms.num_slice_dims; dim_idx ++) { | ||
var index = i32(indices_data[dim_idx + slice_indices_base_offset].x); | ||
let input_dim_idx = uniforms.batch_dims + dim_idx; | ||
if (index < 0) { | ||
${ | ||
inputDims.length === 1 | ||
? 'index += i32(uniforms.input_dims);' | ||
: 'index += i32(uniforms.input_dims[input_dim_idx]);' | ||
} | ||
} | ||
${ | ||
sizesFromSliceDimsData.length === 1 | ||
? 'relative_slice_offset += index * i32(uniforms.sizes_from_slice_dims_data);' | ||
: 'relative_slice_offset += index * i32(uniforms.sizes_from_slice_dims_data[dim_idx]);' | ||
} | ||
} | ||
input_slice_offsets_data[global_idx].x = base_offset + u32(relative_slice_offset); | ||
}`; | ||
}; | ||
|
||
return context.compute( | ||
{ | ||
name: 'computeSliceOffsetsKernel', | ||
shaderCache: { hint: `${inputDims.length === 1}_${sizesFromSliceDimsData.length === 1}`, inputDependencies }, | ||
getRunData: () => ({ | ||
outputs: [{ dims: outputShape, dataType: context.inputs[1].dataType }], | ||
dispatchGroup: { x: Math.ceil(numSlices / 64) }, | ||
programUniforms, | ||
}), | ||
getShaderSource, | ||
}, | ||
{ inputs: [indicesData], outputs: [-1] }, | ||
)[0]; | ||
}; | ||
|
||
const createGatherNDProgramInfo = (context: ComputeContext, attributes: GatherNDAttributes) => { | ||
const inputs = context.inputs; | ||
const inputShape = inputs[0].dims; | ||
const inputType = inputs[0].dataType; | ||
const indicesShape = inputs[1].dims; | ||
const numSliceDims = indicesShape[indicesShape.length - 1]; | ||
const numSlices = ShapeUtil.sizeToDimension(indicesShape, indicesShape.length - 1); | ||
const sliceSize = ShapeUtil.sizeFromDimension(inputShape, attributes.batchDims + numSliceDims); | ||
const numBatches = ShapeUtil.sizeToDimension(inputShape, attributes.batchDims); | ||
const inputBatchStride = ShapeUtil.sizeFromDimension(inputShape, attributes.batchDims); | ||
const numSlicesPerBatch = numSlices / numBatches; | ||
const sizesFromSliceDims = new Array(numSliceDims); | ||
{ | ||
let runningProduct = sliceSize; | ||
for (let i = 0; i < numSliceDims; ++i) { | ||
sizesFromSliceDims[numSliceDims - 1 - i] = runningProduct; | ||
runningProduct *= inputShape[attributes.batchDims + numSliceDims - 1 - i]; | ||
} | ||
} | ||
|
||
const inputSliceOffsetsBuffer = computeSliceOffsetsKernel( | ||
context, | ||
inputs[1], | ||
sizesFromSliceDims, | ||
attributes.batchDims, | ||
inputShape, | ||
numSlices, | ||
numSlicesPerBatch, | ||
inputBatchStride, | ||
numSliceDims, | ||
); | ||
|
||
const lastIndicesDimension = attributes.batchDims + numSliceDims; | ||
if (lastIndicesDimension > inputShape.length) { | ||
throw new Error('last dimension of indices must not be larger than rank of input tensor'); | ||
} | ||
|
||
const outputShape = indicesShape.slice(0, -1).concat(inputShape.slice(lastIndicesDimension)); | ||
const outputSize = ShapeUtil.size(outputShape); | ||
|
||
const programUniforms: ProgramUniform[] = [ | ||
{ type: DataType.uint32, data: outputSize }, | ||
{ type: DataType.uint32, data: sliceSize }, | ||
...createTensorShapeVariables(inputs[0].dims, inputSliceOffsetsBuffer.dims, outputShape), | ||
]; | ||
|
||
const getShaderSource = (shaderHelper: ShaderHelper) => { | ||
const input = inputVariable('data', inputs[0].dataType, inputs[0].dims.length); | ||
const indices = inputVariable( | ||
'slice_offsets', | ||
inputSliceOffsetsBuffer.dataType, | ||
inputSliceOffsetsBuffer.dims.length, | ||
); | ||
|
||
const output = outputVariable('output', inputs[0].dataType, outputShape.length); | ||
return ` | ||
${shaderHelper | ||
.registerUniform('output_size', 'u32') | ||
.registerUniform('slice_size', 'u32') | ||
.declareVariables(input, indices, output)} | ||
${shaderHelper.mainStart()} | ||
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.output_size')} | ||
let slice_offset = slice_offsets[global_idx / uniforms.slice_size].x; | ||
output[global_idx] = data[u32(slice_offset) + global_idx % uniforms.slice_size]; | ||
}`; | ||
}; | ||
context.compute( | ||
{ | ||
name: 'GatherND', | ||
shaderCache: { hint: attributes.cacheKey, inputDependencies: ['rank', 'rank'] }, | ||
getRunData: () => ({ | ||
outputs: [{ dims: outputShape, dataType: inputType }], | ||
dispatchGroup: { x: Math.ceil(outputSize / 64 /* workgroup size */) }, | ||
programUniforms, | ||
}), | ||
getShaderSource, | ||
}, | ||
{ inputs: [inputs[0], inputSliceOffsetsBuffer] }, | ||
); | ||
}; | ||
|
||
export const gatherND = (context: ComputeContext, attributes: GatherNDAttributes): void => { | ||
createGatherNDProgramInfo(context, attributes); | ||
}; | ||
|
||
export const parseGatherNDAttributes = (attributes: Record<string, unknown>): GatherNDAttributes => { | ||
const batchDims = attributes.batch_dims as number; | ||
return { | ||
batchDims, | ||
cacheKey: ``, | ||
}; | ||
}; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
[ | ||
{ | ||
"name": "GatherND int32", | ||
"operator": "GatherND", | ||
"attributes": [], | ||
"cases": [ | ||
{ | ||
"name": "data[4] indices[]", | ||
"inputs": [ | ||
{ | ||
"data": [100, 101, 102, 777, 778, 779, 1000, 1001, 1002], | ||
"dims": [9], | ||
"type": "int32" | ||
}, | ||
{ | ||
"data": [0, 4, 8], | ||
"dims": [3, 1], | ||
"type": "int64" | ||
} | ||
], | ||
"outputs": [ | ||
{ | ||
"data": [100, 778, 1002], | ||
"dims": [3], | ||
"type": "int32" | ||
} | ||
] | ||
} | ||
] | ||
}, | ||
{ | ||
"name": "GatherND float32", | ||
"operator": "GatherND", | ||
"attributes": [], | ||
"cases": [ | ||
{ | ||
"name": "data[4] indices[]", | ||
"inputs": [ | ||
{ | ||
"data": [100.1, 101.2, 102.3, 777.4, 778.5, 779.6, 1000.7, 1001.8, 1002.9], | ||
"dims": [9], | ||
"type": "float32" | ||
}, | ||
{ | ||
"data": [0, 4, 8], | ||
"dims": [3, 1], | ||
"type": "int64" | ||
} | ||
], | ||
"outputs": [ | ||
{ | ||
"data": [100.0999984741211, 778.5, 1002.9000244140625], | ||
"dims": [3], | ||
"type": "float32" | ||
} | ||
] | ||
} | ||
] | ||
}, | ||
{ | ||
"name": "GatherND int32 [2 2 2], batch_dims", | ||
"operator": "GatherND", | ||
"attributes": [{ "name": "batch_dims", "data": 1, "type": "int" }], | ||
"cases": [ | ||
{ | ||
"name": "data[4] indices[]", | ||
"inputs": [ | ||
{ | ||
"data": [0, 1, 2, 3, 4, 5, 6, 7], | ||
"dims": [2, 2, 2], | ||
"type": "int32" | ||
}, | ||
{ | ||
"data": [1, 0], | ||
"dims": [2, 1], | ||
"type": "int64" | ||
} | ||
], | ||
"outputs": [ | ||
{ | ||
"data": [2, 3, 4, 5], | ||
"dims": [2, 2], | ||
"type": "int32" | ||
} | ||
] | ||
} | ||
] | ||
} | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
// Copyright (c) Microsoft Corporation. All rights reserved. | ||
// Licensed under the MIT License. | ||
|
||
#include "core/providers/js/js_kernel.h" | ||
#include "core/providers/js/js_data_types.h" | ||
#include "gather_nd.h" | ||
|
||
namespace onnxruntime { | ||
namespace js { | ||
|
||
ONNX_OPERATOR_KERNEL_EX( | ||
GatherND, | ||
kOnnxDomain, | ||
13, | ||
kJsExecutionProvider, | ||
(*KernelDefBuilder::Create()) | ||
.TypeConstraint("T", BuildKernelDefConstraintsFromTypeList<TypeList<float, | ||
MLFloat16, | ||
int32_t, | ||
uint32_t, | ||
bool>>()) | ||
.TypeConstraint("indices", BuildKernelDefConstraintsFromTypeList<TypeList<int64_t>>()), | ||
GatherND); | ||
|
||
ONNX_OPERATOR_KERNEL_EX( | ||
GatherND, | ||
kOnnxDomain, | ||
12, | ||
kJsExecutionProvider, | ||
(*KernelDefBuilder::Create()) | ||
.TypeConstraint("T", BuildKernelDefConstraintsFromTypeList<TypeList<float, | ||
int32_t, | ||
uint32_t, | ||
bool>>()) | ||
.TypeConstraint("indices", BuildKernelDefConstraintsFromTypeList<TypeList<int64_t>>()), | ||
GatherND); | ||
|
||
ONNX_OPERATOR_KERNEL_EX( | ||
GatherND, | ||
kOnnxDomain, | ||
11, | ||
kJsExecutionProvider, | ||
(*KernelDefBuilder::Create()) | ||
.TypeConstraint("T", BuildKernelDefConstraintsFromTypeList<TypeList<float, | ||
int32_t, | ||
uint32_t, | ||
bool>>()) | ||
.TypeConstraint("indices", BuildKernelDefConstraintsFromTypeList<TypeList<int64_t>>()), | ||
GatherND); | ||
|
||
|
||
} // namespace js | ||
} // namespace onnxruntime |
Oops, something went wrong.